779 research outputs found

    Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs

    Get PDF
    Sources of viscous soluble fibre, such as barley and oats, have often been included in the weaning diet of the pig to accelerate development of the large intestine. Inclusion of a non-fermentable, viscous compound, sodium carboxymethylcellulose (CMC), in a low-fibre weaning diet was tested to assess the influence of digesta viscosity on the gut in the absence of increased fermentation. Two CMC sources, of low and high viscosity, were added to cooked rice-based diet at 40 g/kg total diet. A third control rice diet did not contain any CMC. Diets were fed for 13 d following weaning at 3 weeks of age. Addition of CMC to the diet significantly increased the intestinal viscosity of digesta within the small (P<0.001) and large (P<0.05) intestine. No simple association was found between increases in intestinal viscosity and effects on intestinal morphology and whole-body growth. The average empty-body-weight gain and the small intestinal villus height increased with low-viscosity CMC, but decreased with the high-viscosity CMC group. The full large intestinal weight increased in all pigs fed CMC. Dietary CMC (both low- and high-viscosity) increased the percentage moisture of digesta and faeces, and was associated with increased faecal shedding of enterotoxigenic haemolytic Escherichia coli. Feed ingredients in weaning diets that excessively increase the viscosity of the intestinal digesta may be detrimental to pig health and production

    Affleck-Dine dynamics and the dark sector of pangenesis

    Full text link
    Pangenesis is the mechanism for jointly producing the visible and dark matter asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The baryon-symmetric feature means that the dark asymmetry cancels the visible baryon asymmetry and thus enforces a tight relationship between the visible and dark matter number densities. The purpose of this paper is to analyse the general dynamics of this scenario in more detail and to construct specific models. After reviewing the simple symmetry structure that underpins all baryon-symmetric models, we turn to a detailed analysis of the required Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry breaking are considered, with the messenger scale left arbitrary in the latter, and the viable regions of parameter space are determined. In the gauge-mediated case where gravitinos are light and stable, the regime where they constitute a small fraction of the dark matter density is identified. We discuss the formation of Q-balls, and delineate various regimes in the parameter space of the Affleck-Dine potential with respect to their stability or lifetime and their decay modes. We outline the regions in which Q-ball formation and decay is consistent with successful pangenesis. Examples of viable dark sectors are presented, and constraints are derived from big bang nucleosynthesis, large scale structure formation and the Bullet cluster. Collider signatures and implications for direct dark matter detection experiments are briefly discussed. The following would constitute evidence for pangenesis: supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references added; v3: minor changes, matches published versio

    Visible and dark matter from a first-order phase transition in a baryon-symmetric universe

    Full text link
    The similar cosmological abundances observed for visible and dark matter suggest a common origin for both. By viewing the dark matter density as a dark-sector asymmetry, mirroring the situation in the visible sector, we show that the visible and dark matter asymmetries may have arisen simultaneously through a first-order phase transition in the early universe. The dark asymmetry can then be equal and opposite to the usual visible matter asymmetry, leading to a universe that is symmetric with respect to a generalised baryon number. We present both a general structure, and a precisely defined example of a viable model of this type. In that example, the dark matter is atomic as well as asymmetric, and various cosmological and astrophysical constraints are derived. Testable consequences for colliders include a Z' boson that couples through the B-L charge to the visible sector, but also decays invisibly to dark sector particles. The additional scalar particles in the theory can mix with the standard Higgs boson and provide other striking signatures.Comment: 26 pages, comments and references added, JCAP versio

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    A measurement of the tau mass and the first CPT test with tau leptons

    Full text link
    We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV using tau pairs from Z0 decays. To test CPT invariance we compare the masses of the positively and negatively charged tau leptons. The relative mass difference is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.

    Measurement of the B0 Lifetime and Oscillation Frequency using B0->D*+l-v decays

    Full text link
    The lifetime and oscillation frequency of the B0 meson has been measured using B0->D*+l-v decays recorded on the Z0 peak with the OPAL detector at LEP. The D*+ -> D0pi+ decays were reconstructed using an inclusive technique and the production flavour of the B0 mesons was determined using a combination of tags from the rest of the event. The results t_B0 = 1.541 +- 0.028 +- 0.023 ps, Dm_d = 0.497 +- 0.024 +- 0.025 ps-1 were obtained, where in each case the first error is statistical and the second systematic.Comment: 17 pages, 4 figures, submitted to Phys. Lett.

    First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons

    Full text link
    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters

    Constraining Strong Baryon-Dark Matter Interactions with Primordial Nucleosynthesis and Cosmic Rays

    Full text link
    Self-interacting dark matter (SIDM) was introduced by Spergel & Steinhardt to address possible discrepancies between collisionless dark matter simulations and observations on scales of less than 1 Mpc. We examine the case in which dark matter particles not only have strong self-interactions but also have strong interactions with baryons. The presence of such interactions will have direct implications for nuclear and particle astrophysics. Among these are a change in the predicted abundances from big bang nucleosynthesis (BBN) and the flux of gamma-rays produced by the decay of neutral pions which originate in collisions between dark matter and Galactic cosmic rays (CR). From these effects we constrain the strength of the baryon--dark matter interactions through the ratio of baryon - dark matter interaction cross section to dark matter mass, ss. We find that BBN places a weak upper limit to this ratio <108cm2/g< 10^8 cm^2/g. CR-SIDM interactions, however, limit the possible DM-baryon cross section to <5×103cm2/g< 5 \times 10^{-3} cm^2/g; this rules out an energy-independent interaction, but not one which falls with center-of-mass velocity as s1/vs \propto 1/v or steeper.Comment: 17 pages, 2 figures; plain LaTeX. To appear in PR
    corecore