Graphical programming of telerobotic tasks

Abstract

With a goal of producing faster, safer, and cheaper technologies for nuclear waste cleanup, Sandia is actively developing and extending intelligent systems technologies through the US Department of Energy Office of Technology Development (DOE OTD) Robotic Technology Development Program (RTDP). Graphical programming is a key technology for robotic waste cleanup that Sandia is developing for this goal. Graphical programming uses simulation such as TELEGRIP `on-line` to program and control robots. Characterized by its model-based control architecture, integrated simulation, `point-and-click` graphical user interfaces, task and path planning software, and network communications, Sandia`s Graphical Programming systems allow operators to focus on high-level robotic tasks rather than the low-level details. Use of scripted tasks, rather than customized programs minimizes the necessity of recompiling supervisory control systems and enhances flexibility. Rapid world-modelling technologies allow Graphical Programming to be used in dynamic and unpredictable environments including digging and pipe-cutting. This paper describes Sancho, Sandia`s most advanced graphical programming supervisory software. Sancho, now operational on several robot systems, incorporates all of Sandia`s recent advances in supervisory control. Graphical programming uses 3-D graphics models as intuitive operator interfaces to program and control complex robotic systems. The goal of the paper is to help the reader understand how Sandia implements graphical programming systems and which key features in Sancho have proven to be most effective

    Similar works