25 research outputs found

    Emulating Natural Disturbances for Declining Late- Successional Species: A Case Study of the Consequences for Cerulean Warblers (Setophaga cerulea)

    Get PDF
    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity

    Emulating Natural Disturbances for Declining Late-Successional Species: A Case Study of the Consequences for Cerulean Warblers (Setophaga cerulea)

    Get PDF
    Forest cover in the eastern United States has increased over the past century and while some late-successional species have benefited from this process as expected, others have experienced population declines. These declines may be in part related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining latesuccessional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in forests that already possess appropriate structural attributes in order to maintain maximum productivity

    Willow drives changes in arthropod communities of northwestern Alaska: ecological implications of shrub expansion

    No full text
    Abstract Arthropods serve as complex linkages between plants and higher‐level predators in Arctic ecosystems and provide key ecosystem services such as pollination and nutrient cycling. Arctic plant communities are changing as tall woody shrubs expand onto tundra, but potential effects on arthropod abundance and food web structure remain unclear. Changes in vegetation structure can alter the physical habitat, thermal environment, and food available to arthropods, thereby having the potential to induce cascading effects throughout the ecosystem. We evaluated relationships between the abundance, biomass, and community composition of arthropods and the cover of several shrub taxa across tundra–shrub gradients in northwestern Alaska. While previous research had found a general positive association between arthropod biomass and shrub cover, we found heterogeneity in this relationship with finer‐scale examination of (1) shrub taxa, (2) arthropod taxa, and (3) arthropod guilds. Abundance and biomass of arthropods showed strong, positive associations with the amount of cover of willow (Salix spp.) but were not significantly influenced by shrub birch (Betula spp.) or ericaceous (Ericaceae) vegetation. Significant shifts in arthropod community composition were also associated with willows. Among trophic groups of arthropods, herbivores and pollinators were most positively associated with willow cover. Due to geographical variation in both dominant shrub taxa and their rates of expansion, effects on arthropod communities are likely to be heterogeneous across the Arctic. Taken together, our results suggest that shrub expansion could increase food availability for higher‐level insectivores and shift Arctic food web structure

    Avian response to timber harvesting applied experimentally to manage Cerulean Warbler breeding populations

    Get PDF
    Timber harvesting has been proposed as a management tool to enhance breeding habitat for the Cerulean Warbler (Setophaga cerulea), a declining Neotropical–Nearctic migratory songbird that nests in the canopy of mature eastern deciduous forests. To evaluate how this single-species management focus might fit within an ecologically based management approach for multiple forest birds, we performed a manipulative experiment using four treatments (three intensities of timber harvests and an unharvested control) at each of seven study areas within the core Cerulean Warbler breeding range. We collected preharvest (one year) and post-harvest (four years) data on the territory density of Cerulean Warblers and six additional focal species, avian community relative abundance, and several key habitat variables. We evaluated the avian and habitat responses across the 3–32 m2 ha‒1 residual basal area (RBA) range of the treatments. Cerulean Warbler territory density peaked with medium RBA (~16 m2 ha‒1). In contrast, territory densities of the other focal species were negatively related to RBA (e.g., Hooded Warbler [Setophaga citrina]), were positively related to RBA (e.g., Ovenbird [Seiurus aurocapilla]), or were not sensitive to this measure (Scarlet Tanager [Piranga olivacea]). Some species (e.g., Hooded Warbler) increased with time post-treatment and were likely tied to a developing understory, whereas declines (e.g., Ovenbird) were immediate. Relative abundance responses of additional species were consistent with the territory density responses of the focal species. Across the RBA gradient, greatest separation in the avian community was between early successional forest species (e.g., Yellow-breasted Chat [Icteria virens]) and closed-canopy mature forest species (e.g., Ovenbird), with the Cerulean Warbler and other species located intermediate to these two extremes. Overall, our results suggest that harvests within 10– 20 m2 ha‒1 RBA yield the largest increases in Cerulean Warblers, benefit additional disturbance-dependent species, and may retain closed-canopy species but at reduced levels. Harvests outside the optimum RBA range for Cerulean Warblers can support bird assemblages specifically associated with early or late (closed-canopy) successional stages

    Breeding density ratio (post/pre-disturbance, log-transformed) of cerulean warblers on plots disturbed by various intensities of timber harvest.

    No full text
    <p>Log density ratio = 0 reflects no change in density; all values above 0 indicate increased density, all values below indicate density reduction. Different letters indicate significant differences (<i>P</i>≤0.05) among respective treatments for a given year, based on independent contrasts. Asterisks indicate marginal differences (0.05<<i>P</i>≤0.10) between respective treatment and control for a given year. Error bars represent ± 1 SE.</p

    Graphical model of cerulean warbler source-sink dynamics in relation to regional reproductive consequences of emulated disturbances.

    No full text
    <p>We used point estimates of nest success and mean number of young fledged/successful nest on various treatments from the southern (S) and northern (N) regions, 2008–10. Error bars indicate ±1 SE. Two possible lambda threshold curves are displayed, each based on a published annual survival rate for cerulean warblers: (1) from Ontario (54% AHY survival), and (2) from Venezuela (65% AHY survival). Points to the left of (or below) the threshold curve, for each given survival rate, represent decreasing, or sink populations, and points to the right of (or above) the curve represent increasing, or source populations. HY survival was considered to be 0.5 of the AHY rate and three re-nesting attempts were assumed to occur for all failed nests.</p
    corecore