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Emulating Natural Disturbances for Declining Late-
Successional Species: A Case Study of the Consequences
for Cerulean Warblers (Setophaga cerulea)
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Jeffrey L. Larkin®, Patrick D. Keyser', Felicity L. Newell*, Gregory A. George?, Marja H. Bakermans?,
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Abstract

Forest cover in the eastern United States has increased over the past century and while some late-successional species have
benefited from this process as expected, others have experienced population declines. These declines may be in part
related to contemporary reductions in small-scale forest interior disturbances such as fire, windthrow, and treefalls. To
mitigate the negative impacts of disturbance alteration and suppression on some late-successional species, strategies that
emulate natural disturbance regimes are often advocated, but large-scale evaluations of these practices are rare. Here, we
assessed the consequences of experimental disturbance (using partial timber harvest) on a severely declining late-
successional species, the cerulean warbler (Setophaga cerulea), across the core of its breeding range in the Appalachian
Mountains. We measured numerical (density), physiological (body condition), and demographic (age structure and
reproduction) responses to three levels of disturbance and explored the potential impacts of disturbance on source-sink
dynamics. Breeding densities of warblers increased one to four years after all canopy disturbances (vs. controls) and males
occupying territories on treatment plots were in better condition than those on control plots. However, these beneficial
effects of disturbance did not correspond to improvements in reproduction; nest success was lower on all treatment plots
than on control plots in the southern region and marginally lower on light disturbance plots in the northern region. Our
data suggest that only habitats in the southern region acted as sources, and interior disturbances in this region have the
potential to create ecological traps at a local scale, but sources when viewed at broader scales. Thus, cerulean warblers
would likely benefit from management that strikes a landscape-level balance between emulating natural disturbances in
order to attract individuals into areas where current structure is inappropriate, and limiting anthropogenic disturbance in
forests that already possess appropriate structural attributes in order to maintain maximum productivity.
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Introduction emulate natural disturbance regimes (hereafter, ENDR), particu-
larly in systems where disturbances have been suppressed or
altered, in order to restore biodiversity and improve habitat
conditions for vulnerable species [2]. ENDR strategies have been
relatively well-established as a method of improving conditions for
many declining early successional species [3,4], however, it is

Ecologists have long appreciated the fundamental role of
disturbance in maintaining biodiversity in many ecosystems (e.g.,
intermediate disturbance hypothesis [1]). This understanding has
led to the development of management practices that seek to
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relatively unknown how declining late-successional species may
respond to such practices.

Although severe disturbances (e.g., intense fires, volcanic
eruptions) within mature forests are known to return entire
systems to early successional stages at large scales, less intense
disturbances such as wind-throw, tree senescence, and low-
intensity fires, have the ability to create more subtle micro-
conditions within forests that some late-successional forest species
may respond to favorably. One region where interior forest
disturbance regimes have been suppressed or altered is the eastern
United States. Prior to European colonization, old-growth forests
in the eastern U.S. were regularly disturbed by natural events such
as windthrow, tree senescence, and fire [5-7]. However, since the
early 1900s when forests in this region were almost completely
cleared for timber and subsequent agricultural opportunities [8],
much of the region has regenerated as second-growth forest and
interior disturbances are now rare. Fire has become virtually non-
existent because of suppression [7], and because <1% of forests
are currently in old-growth condition [9], disturbances caused by
treefalls (via senescence and wind) occur less frequently and have
less impact [10]. Reduction of fire and other natural disturbances
has been linked to a number of negative vegetative responses in
eastern forests: declines in disturbance-adapted tree species such as
white oak (Quercus alba) [11], reduction in canopy heterogeneity
[12], proliferation of invasive species [13], and a reduction in tree
diversity [14]. Concurrently, a number of forest-dependent animal
species have undergone steep population declines during this era.
These include vulnerable species such as the Indiana bat (Myotis
sodalis), West Virginia northern flying squirrel (Glaucomys sabrinus
Juscus), and cerulean warbler (Setophaga cerulea) [15-17]. Population
declines of these species are likely multi-faceted (particularly for
migratory species), but some vulnerable late-successional species
may require the specific conditions that small-scale disturbances
create and may thus be adversely affected by a lack of
perturbations in contemporary second-growth forests [17-21].
Hence ENDR, via timber harvesting or prescribed fire, has been
suggested as a strategy to restore natural patterns to forest
environments that were historically shaped by periodic disruptions
and to potentially restore habitat conditions required by these
species [6,19,22].

Birds are an ideal group to use when evaluating how forest
succession and the reduction of natural disturbances during the
last century has affected wildlife in the eastern U.S., in part
because of long-term monitoring programs such as the Breeding
Bird Survey (BBS) [23]. Based on BBS data, the regrowth of
eastern forests over the past century has been, expectedly,
correlated with increasing populations of some avian forest
species, such as northern parula (S. americana) and blackburnian
warblers (S. fusca). However, the successional process has also been,
seemingly paradoxically, negatively related to population trends of
other species that would seem to benefit from what appears to be
an increase in breeding habitat, such as the eastern wood-pewee
(Contopus virens) and Canada warbler (Cardellina canadensis) [24].
Perhaps the most notable declining avian species of eastern forests
is the cerulean warbler. The cerulean warbler is a Neotropical-
Nearctic migratory species that breeds solely in the canopies of
deciduous forests in eastern North America and has long been
considered to be a prototypical late-successional species [25,26].
However, despite recent increases in their putative breeding
habitat, cerulean warblers are one of the fastest declining
passerines in North America; populations declined 3.2%/yr from
1966 to 2003 and the trend has recently worsened to a decline of
4.6%/yr [24]. They are currently listed as a species of
conservation concern by the US government [16] and are
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considered ‘vulnerable to extinction’ by BirdLife International
[27]. Contrary to the long-standing paradigm that their preferred
habitat is closed-canopy forest, recent evidence suggests that the
cerulean warbler’s decline may actually be related to a lack of
small-scale, interior forest disturbances in their eastern U.S.
breeding grounds [21,28,29], particularly in the Appalachians,
where an estimated 70% of their remaining population breeds
[30]. Consequently, ENDR has been suggested as a method of
mitigating degraded forest conditions and restoring habitat for
cerulean warblers [21,31]. However the effectiveness of this
strategy, as well as the ideal scale and intensity of the disturbances
to be emulated, is not known.

Many studies have documented numerical responses of
populations (i.e., abundance or density) to anthropogenic distur-
bance via forest management [e.g., 32,33]. However, our
understanding of the mechanisms responsible for numerical
responses to environmental perturbations is much more limited.
These mechanisms may begin with individual changes in habitat
selection, physiology, breeding behavior, and dispersal [e.g.,
34,35] and then may be scaled up to population changes in
reproductive rates, annual survival rates, and age structure [e.g.,
36,37,38]. Evaluating more than numerical responses is essential
because simple use of, or even preference for, a habitat does not
necessarily indicate the quality of that habitat [39,40]. Mismatches
between habitat selection and individual fitness have been
identified in several taxa, particularly those inhabiting human-
modified habitats where ecological processes have been altered
recently and rapidly [e.g., 41,42,43]. Thus, before considering
ENDR to be an appropriate strategy for restoring conditions for
declining forest species, detailed studies of individual and
population-level responses to disturbance are needed to ensure
that our actions do not create such a situation.

In this study, we investigated the consequences of emulating
natural disturbances for a late-successional avian species, the
cerulean warbler. To do so, we experimentally disturbed mature
forest stands at various intensities, spanning the range of local
disruptions that could occur naturally in mature forests, across the
core of the warbler’s breeding range in the Appalachian
Mountains. We then assessed short-term responses (up to four
years) to these manipulations in terms of breeding density, body
condition, age structure, and reproductive output. In addition, we
explored regional variation in these responses and the potential
impacts of emulating disturbance on the source-sink dynamics of
cerulean warblers in the Appalachian region using a deterministic
population model. Finally, we discuss the implications of our
results for cerulean warbler conservation and management.

Methods

Study sites

We conducted this study at seven sites in the Appalachian
Mountains (Figure 1), all within the Central Hardwoods’ mixed-
mesophytic forest region [44], which also corresponds to the core
of the cerulean warbler breeding range. These sites were: Royal
Blue Wildlife Management Area, TN (RB), Sundquist Forest, TN
(SQ), Raccoon Ecological Management Area, OH (REMA),
Daniel Boone National Forest, KY (DB), Lewis Wetzel Wildlife
Management Area, WV (LW), Wyoming County, WV (WYO),
and Monongahela National Forest, WV (MON). The two most
southern sites (RB and SQ) were both located in the Cumberland
Mountains, an ecophysiographically distinct section of the
Appalachian chain [45,46] that has previously been identified as
a critical breeding locale for the species [47,48]. Thus, we refer to
these two sites hereafter as the “southern region” and the other
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five study sites as the “northern region.” Because cerulean
warblers often require large tracts of contiguous forest [26], we
selected sites embedded within a matrix of mature forest; mean
percent forest cover within 10 km of the site center was 83.2+2.8
[SE]% (range = 74-95%, 2001 NLCD). Plant composition differed
slightly among sites, but common overstory tree species included
tulip poplar (Liriodendron tulipifera); sugar maple (Acer saccharum);
northern red, white, and chestnut oak (Quercus rubra, Q. alba, and Q,
prinus); and various hickory spp. (Carya spp.).

Disturbance treatments

We randomly assigned treatments to four plots at each field site:
light, intermediate, and heavy canopy disturbance, as well as an
undisturbed control plot. Disturbance plots were 10 ha and
control plots were 20 ha in size (Figure 2). We used larger
undisturbed control plots because territory density was lower and
nests more difficult to locate in these habitats. Each plot was
located >200 m from all other plots to maintain independence. At
the periphery of each disturbance treatment were two 5-ha plots of
undisturbed forest that we designated as “buffers” (see Figure 2 for
plot design). We included buffers to examine potential edge effects
of disturbances. Buffers were not spatially independent from
disturbed treatments, so we compared them to controls in separate
but identical analyses.

Disturbances were designed to emulate natural processes that
spanned the range of potential forest disruptions in the Appala-
chian region and were implemented via timber harvest in the fall
of 2006 and spring of 2007. Light treatments (least intense
disturbances) mimicked stands disrupted by multiple small tree-fall
gaps; we reduced basal area (BA) and overstory canopy cover (CC)
on these treatments by approximately 20% (residual BA=21+1
[SE] m®/ha; residual CC=61%6 [SE] %). Intermediate treat-
ments mimicked more severe natural disturbances such as fire,

Emulating Disturbances for Cerulean Warblers

windthrow, or larger tree fall gaps; here we reduced BA and CC
by approximately 40% (residual BA = 14*1 [SE] m?/ha; residual
CC=45%6 [SE] %). Heavy treatments emulated the most severe
natural disturbances such as more intense fire and windthrow, ice-
storms, or landslides; we reduced BA and CC by 75% (residual
BA=6*1 [SE] m?/ha; residual CC=18%4 [SE] %). We left
control plots and buffers undisturbed throughout the duration of
the study (BA=27=1 [SE] m?/ha; CC=73=5 [SE] %). We
attempted to apply disturbances uniformly across all treatment
plots and overstory tree species composition was largely un-
changed after disturbances were implemented [49]. Residual
stands on the intermediate and heavy treatments were comprised
of dominant and co-dominant trees. Because cerulean warblers
prefer productive slopes [29,48], plots were predominantly placed
on north- or east-facing slopes to maximize warbler presence and
to control for potential interactions between aspect and response.

Territory density response

We used a before-after-control-impact study design to evaluate
changes in territory density in response to treatments. We
delineated and quantified territories of cerulean warblers using
the spot-mapping technique. Because male warblers sing often and
are easily detectable in all habitat types, spot-mapping is an ideal
form of estimating density for this species. We performed eight
morning censuses (from sunrise to 1030) per plot during the height
of each breeding season (I May to 15 June), 2005-2010 (two years
pre-disturbance and four years post-disturbance). On gridded
maps, we recorded all locations of male vocalizations including all
instances of counter-singing among neighboring males, as well as
any other territorial behaviors. We defined territories as
geographic clusters of two or more registrations from different
spot-mapping sessions and used counter-singing or other territorial
behavior when available to help separate adjacent territorial

Figure 1. Map displaying locations of seven study sites in the Appalachian Mountains. All sites (white triangles) are located within the

core of the cerulean warbler breeding range.
doi:10.1371/journal.pone.0052107.g001
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Figure 2. Aerial photos from a study site (LW) depicting treatment plot design and intensity of disturbances. Each field site consisted
of three 10-ha treatment plots of various disturbance intensity (created via partial timber harvest) and one 20-ha control plot (undisturbed). Ten ha of
undisturbed forest outside the borders of each treatment plot (buffers) allowed for examination of edge effects of the disturbances.

doi:10.1371/journal.pone.0052107.g002

individuals [50]. We also used nest and banding data (see below) to
refine spot-mapping data and to validate delineation and
estimation of territory numbers. We assigned fractions of
territories to individuals whose territories only partially occurred
within the borders of a plot (based on the proportion of
registrations that fell within the plot).

We estimated baseline territory density on plots by calculating
the mean density of pre-disturbance spot-mapping data (2005-06).
We first compared density between the two pre-disturbance years
using repeated-measures ANOVA. We performed pre-disturbance
spot-mapping on MON and WYO sites in 2006 only, so these sites
were not included in this pre-disturbance analysis. If we found no
significant year effects, we used mean pre-disturbance density (of
2005 and 2006) as a starting point for subsequent analyses. We
estimated change in territory density from pre- to post-disturbance
by calculating

Density ratio(DR) = Post density/ Pre density

where we defined density as the number of territorial males/
10 ha. Two plots were unoccupied pre-disturbance so we replaced
zero values with 0.25 (the lowest recorded territory density other
than zero) to estimate DR; this resulted in more conservative rates
of increase than in reality, but had no effect on our inferences.
Values of DR were log-transformed to meet parametric assump-
tions of normality and equal variance.

We analyzed this experiment as a randomized complete block
design with sites treated as blocks. We compared log DR among
treatments using a repeated measures mixed-model ANOVA with
treatment, year, and treatment x year modeled as fixed effects and
site and site x year as random effects. Year was modeled as a fixed
effect because we were interested in whether treatment effects were
contingent on the number of years since disturbance. If we found a
main effect of treatment, we performed pairwise contrasts to
evaluate differences among treatments and controls. To examine

PLOS ONE | www.plosone.org

edge effects, we performed a separate, but identical, analysis to
compare changes in density in buffers vs. control plots. We found
no statistical difference in log DR among buffers of the three
treatment types in any year (one-way ANOVA; P>0.30 in all
years), so we used the mean density of the three buffers in this
analysis.

Age structure and body condition

To compare age structure and body condition of individuals
occupying territories in each treatment type, we captured male
cerulean warblers using mist-nets while broadcasting territorial
songs and call notes during the height of the breeding season (May
and June) during 2008-2010 (all post-disturbance). We aged males
as second-year (SY; first breeding season) or after-second-year
(ASY) by molt limits (particularly useful is that SY birds retain
brownish juvenile primary coverts and typically two juvenile alula
feathers) [51]. We measured wing chord to the nearest 0.5 mm
and mass to the nearest 0.1 g. We then assigned each male to a
single treatment that best reflected the individual’s territory
location based on evidence gathered from spot-mapping and nest
searching efforts (described below). Birds were captured and aged
at REMA, SQ, RB, LW, and WYO and weighed at REMA, SQ,
and RB.

We compared age structure of male warblers among treatments
against a null hypothesis of no difference in proportion of SY
males using Pearson’s chi-square tests for all sites pooled and for
each region (north or south) separately (to determine if regional
variation existed). To evaluate the impact of disturbance in general
and to increase power, we also compared the age structure of birds
captured in a disturbance of any kind (pooled) with birds captured
in controls. To examine edge effects, we performed a separate, but
identical, analysis to compare age structure in buffers versus
controls. No difference in age structure existed among buffer types
(all sites pooled: 3% =0.69, P=0.71; north: % =0.01, P=0.90;
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south: X22= 1.54, P=0.46), so we pooled all birds captured in
buffers into a single group.

We compared body mass of males occupying territories on
differing treatment plots using a two-way mixed generalized linear
model (GLM). Individual birds were the sampling units in this
instance and we specified age, treatment (light, intermediate,
heavy, or control), and site as fixed factors and year as a random
factor. We also included all two-way interactions and Julian
capture date as a covariate. All two-way interactions were non-
significant (all P>0.19), so we removed these terms and re-ran the
GLM. If the treatment effect was significant, we subsequently
conducted Fisher’s LSD tests to determine where differences
existed (at o= 0.05 and 0.10). We used body mass as an indicator
of condition in this analysis because mass is often more closely
related to the amount of nutritional reserves than unverified
indices [52,53]. However, to be certain this did not affect our
inferences, we also calculated wing-mass residuals and found them
highly correlated to body mass (r=0.93); we performed analyses
with both measures and found no difference. To examine edge
effects, we performed a separate, but identical, analysis to compare
body condition of males in buffers versus control plots. No
difference in body condition existed among individuals occupying
different buffer types (I, o= 0.60, P=0.56), so we pooled all birds
captured in buffers into a single group. If individuals were
captured in more than one season, we randomly selected one
capture event to use in the analysis.

Reproduction

We searched for nests during the entire breeding season (late
April to late June), 2008-2010. We used female behavioral cues
during building and incubation, and to a lesser extent male
vocalizations and behavior, to locate the majority of nests. Because
we were more efficient at locating nests on disturbed treatment
plots, we stratified our search efforts by increasing the time spent
searching on controls and buffers (in an attempt to locate an equal
proportion of nests on each plot). We were unable to examine the
contents of nests until nestlings were approximately 5 d old, and
therefore considered nests ‘active’ when we observed parental
activity at the nest that indicated egg or nestling presence
(incubation or provisioning). Once active, we monitored nests
every 1-3 d until fledging or confirmed nest failure occurred.
From nestling day six until fledging, we monitored nests daily
whenever possible for =30 min using spotting scopes equipped
with 20-60x magnification eyepieces to count the number of
nestlings present. As cerulean warbler nestlings near fledging age,
they become increasingly restless (climbing over each other,
begging, and preening incessantly) and are often easily counted,
particularly on the steep slopes of our field sites (T'.J. Boves pers.
0bs.). To conclusively determine nest fate and number of fledglings
produced, we also attempted to observe fledging events. If we were
unable to directly observe these events, we searched the vicinity of
nests after putative fledging for parental and juvenile activity and
assumed that the number of nestlings present on the last day of the
nestling stage (typically day 10) to be equal to the number of
fledglings produced. We considered any nest that fledged =1
cerulean warbler young to be successful and did not distinguish
between initial and re-nesting attempts. Highly concealed nests
where nestlings were difficult to count were excluded from
fledgling estimates.

We initially compared logistic exposure models in Program
MARK to determine the relative influence of spatial and temporal
factors and treatment on daily nest survival rates (DSR). This
method uses a generalized linear model with binomial distribution
for each day (nest fate =1 if failed, 0 if successful) with a logit link
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function to assess the influence of covariates on DSR. We
compared and ranked models using a corrected version of Akaike’s
information criterion adjusted for small sample sizes (AIC,), where
the minimum AIC, indicates the best model (a combination of
parsimony and explanatory power) [54]. We first compared
models that included the spatial factors of region (southern vs.
northern; RGN) and site (SITE). We found strong support for
region as the spatial factor that best explained variation in DSR
(when compared with region, site AAIC.=6.78), so we used this
spatial factor alone in future models. We then compared all
univariate and additive combinations of RGN, year (YEAR), and
treatment (TRT), as well as YEARXTRT and RGNxTRT
interactions to test for temporal and spatial variation in treatment
effects. We also included a constant survival model (NULL) for a
total of 14 candidate models. We found only one nest at MON, so
this site was not included in this analysis.

After this initial evaluation, we made post-hoc comparisons of
nest survival rates among treatments and controls partitioned by
factors determined to be influential (i.e., included in top models).
We calculated cumulative survival rates for the entire nesting
period by raising covariate-specific DSR to a power equal to the
average length of the nest cycle (25 d) and used Program
CONTRAST to determine statistical significance [55]. We
approximated entire nest success variance and standard errors
using the delta method following Powell [56]. We report these
cumulative survival rates (hereafter, ‘nest success’) throughout the
remainder of this paper for ease of interpretation. We conducted
an identical analysis comparing controls and buffers to examine
potential edge effects on nest success. There were no differences in
reproductive success among buffers of different treatment plots in
either region (north: X22 =0.30, P=0.89; south: X22 =2.39,
P=0.30), so nests found in any buffer were combined into a
single group.

We compared the number of fledglings produced per successful
nest among treatments and controls using a mixed model ANOVA
with treatment and region specified as fixed factors and year as a
random factor. We again conducted an identical analysis
comparing controls and buffers to examine edge effects. We used
Program MARK (v6.1), JMP (v9.0), and SAS (v9.2) statistical
software packages for analyses. For all statistical tests, we
considered differences to be significant at P<0.05 and marginally
significant at 0.05<P=0.10. We report means = 1 SE.

Source-sink modeling

We employed a deterministic population model, following
Buehler et al. [47], to explore how the reproductive consequences
of our treatments may affect regional source-sink dynamics. Input
parameters included regionally and treatment-specific nest success
and number of young produced/successful nest (as we detected
regional variability in reproductive output, see results) derived
from this study, as well as external estimates of after-hatch-year
(AHY) and hatch-year (HY) survival, proportion of individuals that
attempt to re-nest after failing, and number of re-nesting attempts.
Because we were specifically interested in assessing how the
reproductive consequences of disturbance may impact source-sink
dynamics, we assumed equal annual survival rates, proportion of
re-nesting, and number of re-nesting attempts across treatments
and regions. We were unable to obtain reliable adult survival
estimates from our study, likely because of high dispersal rates
between breeding seasons [57], so we compared two published
adult annual survival rates: 54% from Ontario [58] and 65% from
Venezuela on their wintering grounds [59]. No data exist for
cerulean warbler HY survival, so we assumed HY to be half of
AHY survival, as has been used in previous models and has been
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found empirically in other passerines [60,61]. We recognize that
variation in breeding habitat may lead to differential carry-over
effects on migratory or winter survival rates [62], however, we
observed within-breeding season survival to be nearly 100%, and
parents and offspring often dispersed from their chosen breeding
habitat soon after fledging occurred (T.J. Boves, unpub. data and
pers. obs.). Thus, it is likely that variation in breeding habitat had a
greater impact on reproduction than on these other parameters
(which were likely more highly influenced by post-breeding habitat
decisions).

Results

Territory density

We found no significant year effects (/7 ;5=0.05; P=0.41) or
year x plot interaction (Fs;,=0.16; P=0.49) on pre-disturbance
densities, so we used mean pre-disturbance density as a single pre-
treatment value. After disturbance, we found a main treatment
effect on log DR (F;;4=4.96, P=0.01) and also a treatment x
year effect (Fy ;0=2.79, P=0.007), so we performed contrasts to
evaluate differences for each year independently. In 2007 (first
year post-disturbance), log DR was significantly greater on
intermediate treatment plots than on all other treatment and
control plots, and marginally greater on light treatment plots when
contrasted with heavy (Figure 3, Table 1). In 2008, log DR
remained significantly greater on intermediate treatment plots
than on control and heavy treatment plots, and was marginally
greater on light treatment plots than on control plots (Figure 3,
Table 1). In 2009, log DR was significantly greater on
intermediate treatment plots, and marginally greater on heavy
and light treatment plots, when contrasted with controls, but there
were no differences among any of the disturbed treatments
(Figure 3, Table 1). As of 2010, log DR was significantly greater on
intermediate treatment plots than on control and light treatment
plots, and for the first time, was significantly greater on heavy
treatment plots than on control plots (Figure 3, Table 1).
Additionally, in 2010 there was no longer a statistical difference
between light treatment and control plots and only a marginal
difference between heavy and intermediate treatment plots
(Figure 3, Table 1). We also found evidence of an edge effect as
log DR was significantly greater on treatment plot buffers than on
control plots (Table 1); there was no treatment x year effect in this
case (F335=0.88; P=0.46).

Age structure and body condition

In total, we captured and aged 204 male cerulean warblers;
27% were SY birds, 73% ASY. With all sites pooled, there was no
difference in the age structure of males occupying the various
treatment and control plots (3%5=1.03, P=0.79). There was also
no difference in the age structure of males occupying any disturbed
treatment plot vs. males occupying control plots (%, =0.05,
P=0.83). Assessing each region separately, no difference in age
structure existed among treatment and control plots (north: n= 58,
%%5=0.64, P=0.89; south: n=67, 3?5 = 3.78, P=0.29) or when all
disturbed treatment plots were compared with control plots (north:
x%;=0.09, P=0.93; south: ¥%;=0.05, P=0.82). No edge effect
was observed as age structure of birds occupying buffers did not
differ from those occupying control plots when all sites were
pooled (7(21 =0.17, P=0.68), or within regions (north: v}, =1.18,
P=0.28; south: ¥*;=0.36, P=0.55).

Controlling for site, age, and year effects, body condition of
male warblers differed by treatment (F355=3.41, P=0.02,
Figure 4). Males occupying territories on light and intermediate
treatment plots were in significantly better condition than those
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occupying control plots (Fisher’s LSD, P=0.05; Figure 4) and
males occupying light treatment plots were in marginally better
condition than those occupying heavy treatment plots (Fisher’s
LSD, P=0.10). Body condition also differed by age (SY
males =9.21£0.07, n=17; ASY males=9.52+0.04, n=49;
F],56: 1219, P:OO()l) but did not differ by site <F2’56:0.82,
P=0.45). No edge effect was detected as body condition of males
occupying buffers did not differ from those on control plots
(Controls =9.26+0.84, n=21; Buffers=9.18%0.72, »n=29;
F; 45=0.49, P=0.49).

Reproduction

We found and monitored 413 nests for a total of 6,384 exposure
days. All four of the top models included treatment (as well as
region) and the top model (RGN+YEAR+TRT) was 96X more
supported than the simpler model that did not include treatment
(RGN+YEAR; Table 2). There was some support for a region x
treatment interaction as it was included in the third- and fourth-
ranked models, but virtually no support existed for a year x
treatment interaction as it was not included until the seventh-
ranked model (AAIC =11.97). Confidence intervals (95%) of B
coefficients from the top model for the northern region (negative
slope), control treatment (positive slope), light treatment (negative
slope), and for 2009 (negative slope) did not include zero, which
suggests their importance in explaining variation in DSR (Table 3).

Cumulative nest success differed among all sites (%5 = 27.56,
P<0.0001) but did not differ among sites within regions (North:
¥*3=1.61, P=0.66; South %*, = 1.44, P=0.23). Thus, we pooled
nests from respective regions to further assess treatment effects on
nest success. In the southern region, cumulative annual nest
success varied from 0.48%0.06 in 2009 to 0.67£0.05 in 2010.
When pooling nests from all three years (Figure 5), nest success in
this region was greater on control plots than on light (3?, = 15.02,
P<0.0001), intermediate (x21 =4.41, P=0.04), and heavy treat-
ment plots (x%; =15.02, P<0.0001). Nests on intermediate
treatment plots were more successful than those on light treatment
plots (% =4.38, P=0.04). There was no evidence of an edge
effect on nest success as controls and buffers did not differ
(x>, =1.89, P=0.17). Annually, nest success was greater on
control plots than heavy treatment plots in 2009 (3%, =26.07,
P<0.0001) and greater than light treatment plots during 2009
(x*1=33.73, P<0.0001) and 2010 (3% = 5.64, P=0.02).

In the northern region, annual nest success ranged from
0.22%0.04 (2009) to 0.40%0.06 (2010). When pooling nests from
all three years (Figure 5), nest success was marginally greater on
control plots than on light treatment plots (32, = 3.50, P=0.06),
but did not differ among any other pairwise combination of
treatments and controls. There was marginal evidence of an edge
effect as nests on control plots were marginally more successful
than those on buffer plots (x?, =3.12, P=0.08). On an annual
basis, nest success did not differ between control or any treatment
or buffers (all >0.10), however small sample sizes hampered our
ability to detect statistical differences annually.

The number of fledglings produced/successful nest differed by
region; warblers in the south produced more fledglings/successful
nest (¥=3.33%20.07) than in the north (¥=2.28%0.14;
F; 9,=33.98, P<0.0001; see Figure 6). However, there was no
effect of treatment (F3 4995 =0.64, P=0.60). Comparing controls
with buffers, nests in the south again produced more young
(F1.75.95=19.04, P<0.0001), but there was no evidence of an edge
effect on fledglings produced (F;, 75.95=0.05, P=0.82).

The cause of nest failure was directly observed or inferred from
evidence at only 36 (of 174 failed) nests. Predation was the main
cause of nest failure (n =22 of these 36 nests) followed by disease or
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starvation (n=6). The majority of failed nests were abandoned
suddenly for unknown reasons, suggesting that predation was most
likely, but nest desertion subsequent to brown-headed cowbird
(Molothrus ater) parasitism cannot be ruled out.

Source-sink dynamics

Our graphical model shows that given an AHY annual survival
rate of 54%, only control plots in the southern region had levels of
reproduction sufficient to maintain a stable (or source) population
(Figure 6). If annual survival was increased to 65%, all treatment
plots in the southern region would act as sources (A>1). We found
no treatment plot in the northern region, including controls, that
could maintain a stable population given either of these two
survival rates; all require either greater annual survival or
reproductive output, immigration from other locations, or an
adjustment in model assumptions to persist.

PLOS ONE | www.plosone.org

Discussion

We hypothesized that existing second-growth forest in the
eastern United States may not provide quality habitat for some
late-successional species, especially if those species are adapted to
small-scale natural disturbances that have been altered or
suppressed within contemporary forests. Accordingly, we docu-
mented attraction to emulated disturbances of various intensities
by a declining species typically considered to be late-successional,
the cerulean warbler, in highly-forested ecosystems in the
Appalachian Mountains. The density response we observed is
congruent with recent correlative studies that found cerulean
warblers associated with canopy disturbances within mature
forests [21,29]. In our study, attraction was greatest after
intermediate and heavy disturbances, suggesting that the species
is adapted to fire, intense windthrow, landslides, or other moderate
interior natural disturbances, rather than smaller single tree-fall
gaps caused by tree senescence, for instance. Density increases
after intermediate disturbances on some sites were unexpectedly
strong and immediate (e.g., 0.25 territories pre-disturbance to 8.5
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territories in the first breeding season post-disturbance at LW); on
other sites increases were more modest, perhaps because of pre-
disturbance saturation. At RB, pre-disturbance density was at a
(likely) near-saturation level of 17 territories/10 ha. Density
increased on this plot post-disturbance, but only to a maximum
of 20.5 territories in 2010. At such great pre-disturbance densities,
it would seem unlikely that many more birds could occupy the
area, no matter how attractive the habitat became. Densities
increased more gradually after heavy disturbances (and actually
decreased in the first year post-disturbance). This suggests that
some physiognomic cue important for habitat selection required
multiple growing seasons to develop after these more severe
disturbances, and could be related to temporal changes in canopy
or understory structure [63]. The edge effect that we detected (i.e.,
density increases in undisturbed buffers surrounding disturbed
plots) was primarily related to an increase in birds establishing
territories that overlapped both the treatment plot and buffers (J.
Sheehan, unpub. data).

As disturbances attracted warblers at higher densities, the lack
of difference in age structure among treatments runs counter to the
expectation that older birds should out-compete inexperienced
males and settle in preferred habitat more often [64,65]. However,
we did find that males occupying light and intermediate treatment
plots, regardless of age, were in better condition than those
inhabiting controls. We do not know if this difference reflects a
settlement bias (e.g., if individuals on disturbed treatments were in
better condition on arrival or of higher quality), if disturbances
allowed individuals to improve their condition (e.g., by virtue of

PLOS ONE | www.plosone.org

Table 1. Density of cerulean warbler territories (£ 1 SE) and results of independent contrasts comparing log density ratio (post/
pre-density) of treatment plots with controls for each given year.
Treatment Year Density Df F P
Control Pre-disturbance 4.82+1.59
2007 4.70+1.20
2008 343*+1.27
2009 4.16+1.84
2010 4.52+1.89
Light Pre-disturbance 5.52+1.92
2007 7.14+2.40 1,18 0.41 0.53
2008 7.89+2.07 1,18 3.25 0.09
2009 9.11+2.70 1,18 3.96 0.06
2010 6.93+2.56 1,18 2.1 0.16
Intermediate Pre-disturbance 4.95+2.34
2007 7.43+2.18 1,18 8.93 0.008
2008 8.07+2.06 1,18 10.16 0.005
2009 11.43+3.43 1,18 11.25 0.003
2010 10.57+3.02 1,18 15.03 0.001
Heavy Pre-disturbance 2.34%1.13
2007 1.82+1.00 1,18 1.53 0.23
2008 3.29+1.53 1,18 1.20 0.29
2009 4.75+1.98 1,18 3.76 0.07
2010 5.21+2.66 1,18 4.50 0.05
Buffers Pre-disturbance 4.81+1.33
2007-2010 5.11+0.58 1,6 6.08 0.05
Densities displayed are untransformed no. of territories/10 ha. Significant (P<0.05) or marginal (0.05<<P=0.10) results are in bold. Buffers and controls were compared in
a separate analysis with no significant treatment x year interaction, so individual annual contrasts were not performed.
doi:10.1371/journal.pone.0052107.t001

increased insect availability after disturbances), or if a combination
of the two was responsible for this pattern. Canopy gaps can alter
the composition of arthropod communities [66] and cerulean
warblers may be better adapted for foraging on invertebrate
species inhabiting broken canopies. Indeed, George [49] found
that warblers increased their use of aerial foraging maneuvers after
partial timber harvests occurred. However, it is not known if this
behavioral alteration results in improved condition; future studies
that monitor settlement patterns and individual changes in body
mass across habitat types would help tease these possibilities apart.

Despite the density increases and improved body condition of
individuals occupying treatment plots, per capita reproductive
output was lower on many of the treatment plots compared to
local control plots. Reproductive differences were most obvious in
the southern region, where disparities in nest success between
control and treatment plots were statistically apparent in all cases.
In the northern region, factors seemingly unrelated to the
manipulations reduced overall reproductive success to where
disturbance had less influence, and low sample sizes made it
difficult to detect statistical differences in some instances (e.g., =15
nests on heavy treatment plots). However, nest success was
marginally greater on control plots than on light treatment plots
(and buffers) in this region as well. Thus it appears that individuals,
particularly in the southern region, often chose to breed in habitats
where they failed to maximize reproduction.

There are numerous potential explanations to this seeming
contradiction [see 67 for an exhaustive list]. One possibility is that
by breeding in disturbed habitats, individuals increased their

January 2013 | Volume 8 | Issue 1 | €52107



9.7 1

9.6 -

9.5 A

9.4 -

93 A

>

Body mass (g)

9.1

89 4

88 +——— T

Emulating Disturbances for Cerulean Warblers

(18)

Control Light

. —

Intermediate

Heavy

Treatment

Figure 4. Body mass of male cerulean warblers by treatment after controlling for age, year, and site, 2008-10. Different letters indicate
significant differences (P<0.05) between respective treatments. Error bars represent = 1 SE and numbers above bars indicate sample size.

doi:10.1371/journal.pone.0052107.g004

Table 2. Model selection results for factors influencing daily
survival rate of cerulean warbler nests.

Model k AICc AAICc w
S(RGN+YEAR+TRT) 7 114228 0 0.535
S(RGN+TRT) 5 1143.24 0.96 0.331
S(RGN+YEAR+TRT+RGN*TRT) 13 1146.23 3.95 0.074
S(RGN+TRT+RGN*TRT) 11 1147.01 473 0.050
S(RGN+YEAR) 4 115142 9.14 0.006
S(RGN) 2 1153.74 1146 0.002
S(RGN+TRT+YEAR+TRT*YEAR) 18 115425 11.97 0.001
S(TRT+YEAR) 6 115639 14.11  0.001
S(SITE) 6 115743 15.15 0.000
S(RGN+TRT+YEAR+TRT*YEAR+RGN*TRT) 25 1157.80 15.52 0.000
S(TRT) 3  1159.81 17.53 0.000
S(YEAR) 3 1165.55 23.27 0.000
S(TRT+YEAR+TRT*YEAR) 16 1168.18 25.90 0.000
S(NULL) 1 116862 26.34 0.000
Models with a lower AAIC and a greater AIC. weight have greater support.
Model weight (w) and number of estimated parameters (k) are indicated.
doi:10.1371/journal.pone.0052107.t002
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lifetime fitness (despite reductions to current reproductive output)
by improving their chances of surviving to the next breeding
season or by improving their offspring’s chances of survival during
the dangerous post-fledging period. Increased annual survival of
cerulean warblers after canopy disturbances may be possible by
virtue of the potential carry-over effects of improved body

Table 3. Parameter estimates (on logit-link scale), standard
errors (SE), and 95% confidence intervals (Cl) from top-ranked
model (RGN+YEAR+TRT) estimating daily survival rate of
cerulean warbler nests.

Parameter p estimate SE Lower 95% Cl Upper 95% CI
Intercept 3.7735 0.2383 3.3064 4.2407

RGNyorth —0.7191 0.1823 —1.0764 —0.3618
TRTcontrol 0.7873 0.3372 0.1263 1.4482

TRTiight —0.5395 0.1949 —0.9216 —0.1574
TRTintermediate ~ 0.3610 0.2682 —0.1646 0.8866
YEAR,008 —0.2521 0.2260 —0.6950 0.1908
YEAR000 —0.4299 0.1989 —0.8197 —0.0400

doi:10.1371/journal.pone.0052107.t003
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condition on migratory or winter survival [62,68,69], and post-
fledging survival rates may be greater because of the abundance of
concealing understory vegetation on intermediate and heavy
treatment plots [70,71]. However, as alluded to previously, the
influence of breeding habitat on these future components of fitness
may be relatively indirect and is currently unclear, while the
influence of breeding habitat on nest success and fledgling
production is direct and obvious. A second possibility is that
density was not an accurate reflection of habitat preference and
individuals were forced into disturbed habitats via competitive
exclusion by more dominant individuals [39,65]. The evidence
does not support this possibility however, as we documented no
age differences among individuals occupying treatment and
control plots, and those individuals that did occupy territories in
disturbed habitats were, in fact, in better condition than those in
undisturbed control plots.

A third possibility is that individuals may have made
maladaptive decisions when selecting disturbed habitats (i.e.,
disturbed interior forest stands may act as “ecological traps” [72]),
particularly when choosing among habitats at the local scale.
Under evolutionarily-relevant historical conditions, canopy distur-
bances in old-growth forests caused by fire or natural treefalls may
have created habitats where warblers were able to achieve
relatively high levels of fitness. After emulated natural disturbanc-
es, environmental cues associated with high fitness may still elicit

PLOS ONE | www.plosone.org
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the same habitat selection behavior, however other conditions,
contemporary in nature, may have also been altered, thereby
potentially decoupling the habitat cues from historically high levels
of reproduction. If broad-scale factors (such as landscape-scale
fragmentation) [73] are responsible for altering the ecological
pressures that are at play, then the source of disturbance may be
unimportant as even natural disturbances may result in maladap-
tive behavior. In response to a natural disturbance event, Jones et
al. [74] reported a decrease in cerulean warbler nest success a year
after an ice storm in Ontario, Canada. However densities also
declined in that case, likely producing a sink rather than a trap.
Thus, despite our best intentions, forests disturbed by human
activity may only resemble naturally disturbed forests, but may
differ in terms of tree age-class distribution [75], increased soil
disturbance [76], a lack of standing dead trees or snags [77], or in
spatial scale and canopy structural complexity [6]. These artificial
modifications may result in differing predation pressures, arthro-
pod composition [78], or other factors that may make it difficult
for warblers to correctly assess habitat quality. Potential ecological
traps created by timber harvests have recently been identified for
other declining species including olive-sided flycatchers (Contopus
coopert) breeding in selectively logged forests in Montana [43] and
rusty blackbirds (Euphagus carolinus) breeding in regenerating clear-
cuts in northern New England [79]. In the future, research
evaluating survival during the post-fledging period across distur-
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bance gradients is warranted for cerulean warblers (and other plots, but this hypothesis will require further study. An alternative
canopy nesting species), although this work will be challenging explanation is that some canopy closure had already occurred on
because of difficulties in capturing nestlings and fledglings. In the light treatment plots [e.g., 82], and attraction to the resulting
addition, comparisons of selective pressures in natural versus structural features of the vegetation had begun to wane.
emulated disturbances and 24-hour video surveillance of nests, will Continued monitoring of these field sites to assess the persistence
improve our understanding of the causes of nest failure and of the trends we have observed would be very useful.

adaptive nature of habitat selection behavior.
An important caveat of our study is that we measured responses Conservation and Management Implications

that were short-term in nature (14 years), and responses may vary The conservation and management implications of our results
over time. We may have even observed an adjustment in habitat are complicated by the spatial variability of the impact of
selection behavior in 2010, only four years post-disturbance. While disturbances on reproduction, and regional variation in reproduc-
densities increased in 2008 and 2009 on the light treatment plots, tive output in general. In previous studies that have documented
by 2010 the density response to light treatments was no longer putative maladaptive habitat selection, preference has only been
statistically different than the response to controls. Birds may track considered at local scales (e.g., between adjacent habitats; [43,83—
variation in breeding success and adjust their habitat selection 85]). However, for migratory or highly dispersive species, habitat
decisions to match local conditions [80,81]. If habitat selection selection behavior also occurs at broader scales (e.g., the decision
behavior is dynamic, and relatively low levels of nest success persist to breed in the northern or southern portion of the range) [86].
on disturbed treatments, densities on light (and possibly other) Thus, simply comparing choices made during the final stages of
treatment plots may eventually drop below densities on the control habitat selection greatly simplifies, and possibly misrepresents, this
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complex behavioral process. In the case of cerulean warblers,
although our results suggest that preference for disturbed forest
may be maladaptive at the local scale in the southern region,
selection for disturbed habitat in this region could actually be
adaptive if the alternative option was to migrate further north to
breed, or to not reproduce at all. Therefore, a fundamental
question that affects our interpretations, as well as those of any
study of habitat selection that assesses the adaptive nature of this
behavior, is: what alternative breeding locations do birds forego to
breed in attractive habitat types? As cerulean warblers appear to
regularly engage in long-distance dispersal (putatively searching
for recently disturbed forest habitat), the creation of attractive
habitats in the southern region (the Cumberland Mountains) may
actually be beneficial to the overall sustainability of the global
population because it could provide additional breeding opportu-
nities in this highly productive region. However, for this
management strategy to be successful, it requires that birds
attracted to disturbances in the Cumberlands to have otherwise
attempted to breed in less productive regions (e.g., the northern
region), or not at all (i.e., ‘floaters’), rather than breeding in local
undisturbed forest.

In the northern region, emulating disturbances did not always
result in major declines in local reproductive success and thus
doing so may not create traditional ecological traps. However, if
newly created disturbances in this region attract birds from distant
locations where fecundity may have been greater (e.g., Cumber-
lands), a broader-scale trap could be created. Again, if individuals
attracted to disturbances in the north would have otherwise failed
to reproduce at all, even these northern disturbances with
relatively low per capita productivity could have a positive
population effect. These contingencies demonstrate how the true
impact of putative ecological traps may be quite complex and
difficult to assess when viewed in isolation.

Despite those complexities, our study provides evidence that
Increasing, or even maintaining, populations of cerulean warblers,
and potentially other disturbance-adapted late-successional spe-
cies, into the future will likely require a cooperative, landscape-
scale approach to managing forests. The challenge for conserva-
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tion will be to determine the appropriate locations for implement-
ing disturbances on the landscape in order to provide habitat for a
maximum number of breeding pairs while maintaining maximum
individual productivity. Accordingly, a conservative approach to
management is warranted which would involve emulating
disturbances similar in scale and intensity to our intermediate
treatments in locations where existing forest structure is unsuitable
and breeding densities are low, while limiting disturbance in areas
where forest structure is currently appropriate and breeding
densities are higher. Determining where appropriate forest
structure currently exists may be accomplished by performing
systematic bird surveys (to directly assess density) or by applying
predictive models which use vegetative and topographic measure-
ments [similar to 21,48]. Future studies examining annual
survivorship and long-distance dispersal patterns of cerulean
warblers inhabiting various disturbed treatments in multiple
regions could help inform this situation further. Finally, it is
important to note that we found only minimal impacts of
disturbance, beneficial or otherwise, extending beyond the borders
of the area treated (l.e., buffers), which suggests that the
consequences of any of the forest management practices evaluated
here will mostly apply only to the harvested stands themselves.
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