22 research outputs found

    A User‐Friendly Workbook to Facilitate Rapid and Accurate Rare Earth Element Analyses by ICP‐MS for Multispiked Samples

    Get PDF
    The rare earth elements (REEs) are widely used as geochemical tracers in the earth, planetary, and ocean sciences. Inductively coupled plasma‐mass spectrometry (ICP‐MS) has become the method of choice to analyze REE concentrations because it can rapidly measure the entire REE spectrum at the same time. This Technical Report presents a user‐friendly "REE Calculation Workbook" in Microsoft Excel to be used for calculating REE abundances in samples equilibrated with a multielement REE spike. This Workbook can be conveniently used to calculate REE concentrations in natural samples for spiked and unspiked elements measured by ICP‐MS. For the spiked elements, their concentrations are calculated using isotope dilution equations. Using these spiked elements as references, concentrations of the four mono‐isotopic REE elements, and other REE elements that are treated as mono‐isotopic elements (in our case, La and Lu), can be calculated. The REE Workbook can be easily set up for use with different REE spikes. Evaluation of our analytical quality using a quadrupole ICP‐MS on 10‐ml‐sized seawater samples shows that our analyses are comparable to high‐precision thermal ionization mass spectrometry (TIMS) studies, with much less time spent processing and analyzing, and with the added advantages of determining mono‐isotopic elements. An important result is the clear demonstration of enrichments in Gd and Er compared to neighboring elements in seawater samples. In addition, we compare and evaluate commonly used reference standards BCR‐1, Post‐Archean Australian Shale (PAAS), and North American Shale Composite (NASC)

    Intermediate-energy Coulomb excitation of 58,60,62Cr: The onset of collectivity toward N=40

    Get PDF
    Intermediate-energy Coulomb excitation measurements were performed on the neutron-rich isotopes 58,60,62Cr. The electric quadrupole excitation strengths, B(E2; 01+→21+), of 60,62Cr are determined for the first time. The results quantify the trend of increasing quadrupole collectivity in the Cr isotopes approaching neutron number N=40. The results are confronted with large-scale shell-model calculations in the fpgd shell using the state-of-the-art LNPS effective interaction. Different sets of effective charges are discussed that provide an improved and robust description of the B(E2) values of the neutron-rich Fe and Cr isotopes in this region of rapid shell evolution. The ratio of the neutron and proton transition matrix elements, |Mn/Mp|, is proposed as an effective tool to discriminate between the various choices of effective charges

    Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack

    Get PDF
    Localized radiative energy transfer from a near-field emitter to a magnetic thin film structure is investigated. A magnetic thin film stack is placed in the near-field of the plasmonic nano-antenna to utilize the evanescent mode coupling between the nano-antenna and magnetic thin film stack. A bow-tie nano-optical antenna is excited with a tightly focused beam of light to improve near-field radiative energy transfer from the antenna to the magnetic thin film structure. A tightly focused incident optical beam with a wide angular spectrum is formulated using Richards-Wolf vector field equations. Radiative energy transfer is investigated using a frequency domain 3D finite element method solution of Maxwell's equations. Localized radiative energy transfer between the near-field emitter and the magnetic thin film structure is quantified for a given optical laser power at various distances between the near-field emitter and magnetic thin film
    corecore