59 research outputs found

    Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled \u3csup\u3e13\u3c/sup\u3eCO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Clinicians commonly measure the 13CO2 in exhaled breath samples following administration of a metabolic tracer (breath testing) to diagnose certain infections and metabolic disorders. We believe that breath testing can become a powerful tool to investigate novel questions about the influence of ecological and physiological factors on the oxidative fates of exogenous nutrients. Here we examined several predictions regarding the oxidative kinetics of specific carbohydrates, amino acids and fatty acids in a dietary generalist, the house sparrow (Passer domesticus). After administering postprandial birds with 20 mg of one of seven 13C-labeled tracers, we measured rates of 13CO2 production every 15 min over 2 h. We found that sparrows oxidized exogenous amino acids far more rapidly than carbohydrates or fatty acids, and that different tracers belonging to the same class of physiological fuels had unique oxidative kinetics. Glycine had a mean maximum rate of oxidation (2021 nmol min−1) that was significantly higher than that of leucine (351 nmol min−1), supporting our prediction that nonessential amino acids are oxidized more rapidly than essential amino acids. Exogenous glucose and fructose were oxidized to a similar extent (5.9% of dose), but the time required to reach maximum rates of oxidation was longer for fructose. The maximum rates of oxidation were significantly higher when exogenous glucose was administered as an aqueous solution (122 nmol min−1), rather than as an oil suspension (93 nmol min−1), supporting our prediction that exogenous lipids negatively influence rates of exogenous glucose oxidation. Dietary fatty acids had the lowest maximum rates of oxidation (2-6 nmol min−1), and differed significantly in the extent to which each was oxidized, with 0.73%, 0.63% and 0.21% of palmitic, oleic and stearic acid tracers oxidized, respectively

    Flight Modes in Migrating European Bee-Eaters: Heart Rate May Indicate Low Metabolic Rate during Soaring and Gliding

    Get PDF
    BACKGROUND: Many avian species soar and glide over land. Evidence from large birds (m(b)>0.9 kg) suggests that soaring-gliding is considerably cheaper in terms of energy than flapping flight, and costs about two to three times the basal metabolic rate (BMR). Yet, soaring-gliding is considered unfavorable for small birds because migration speed in small birds during soaring-gliding is believed to be lower than that of flapping flight. Nevertheless, several small bird species routinely soar and glide. METHODOLOGY/PRINCIPAL FINDINGS: To estimate the energetic cost of soaring-gliding flight in small birds, we measured heart beat frequencies of free-ranging migrating European bee-eaters (Merops apiaster, m(b)∌55 g) using radio telemetry, and established the relationship between heart beat frequency and metabolic rate (by indirect calorimetry) in the laboratory. Heart beat frequency during sustained soaring-gliding was 2.2 to 2.5 times lower than during flapping flight, but similar to, and not significantly different from, that measured in resting birds. We estimated that soaring-gliding metabolic rate of European bee-eaters is about twice their basal metabolic rate (BMR), which is similar to the value estimated in the black-browed albatross Thalassarche (previously Diomedea) melanophrys, m(b)∌4 kg). We found that soaring-gliding migration speed is not significantly different from flapping migration speed. CONCLUSIONS/SIGNIFICANCE: We found no evidence that soaring-gliding speed is slower than flapping flight in bee-eaters, contradicting earlier estimates that implied a migration speed penalty for using soaring-gliding rather than flapping flight. Moreover, we suggest that small birds soar and glide during migration, breeding, dispersal, and other stages in their annual cycle because it may entail a low energy cost of transport. We propose that the energy cost of soaring-gliding may be proportional to BMR regardless of bird size, as theoretically deduced by earlier studies

    Allocation of endogenous and dietary protein in the reconstitution of the gastrointestinal tract in migratory blackcaps at stopover sites

    Get PDF
    During migratory flight, the mass of the gastrointestinal tract (GIT) and its associated organs in small birds decreases in size by as much as 40%, compared with the preflight condition because of the catabolism of protein. At stopover sites, birds need 2–3 days to rebuild their GIT so that they can restore body mass and fat reserves to continue migration. The source of protein used to rebuild the GIT may be exogenous (from food ingested) or endogenous (reallocated from other organs) or both. Because the relative contribution of these sources to rebuild the GIT of migratory birds is not yet known, we mimicked in-flight fasting and then re-feeding in two groups of blackcaps (Sylvia atricapilla), a Palearctic migratory passerine. The birds were fed a diet containing either 3% or 20% protein to simulate different refueling scenarios. During re-feeding, birds received known doses of 15N-l-leucine before we measured the isotope concentrations in GIT and associated digestive organs and in locomotory muscles. We then quantified the extent to which blackcaps rebuilt their GIT with endogenous and/or dietary protein while refeeding after a fast. Our results indicate that blackcaps fed the low-protein diet incorporated less exogenous nitrogen into their tissues than birds fed the 20% protein diet. They also allocated relatively more exogenous protein to the GIT than to pectoral muscle than those birds re-fed with the high-protein diet. However, this compensation was not sufficient for birds eating the low-protein diet to rebuild their intestine at the same rate as the birds re-fed the high-protein diet. We concluded that blackcaps must choose stopover sites at which they can maximize protein intake to minimize the time it takes to rebuild their GIT and, thus, resume migration as soon as possible

    A Mass Balance Approach to Identify and Compare Differential Routing of \u3csup\u3e13\u3c/sup\u3eC-Labeled Carbohydrates, Lipids, and Proteins In Vivo

    Get PDF
    All animals route assimilated nutrients to their tissues where they are used to support growth or are oxidized for energy. These nutrients are probably not allocated homogeneously among the various tissue and are more likely to be preferentially routed toward some tissues and away from others. Here we introduce an approach that allows researchers to identify and compare nutrient routing among different organs and tissues. We tested this approach by examining nutrient routing in birds. House sparrows Passer domesticus were fed a meal supplemented with one of seven 13C-labeled metabolic tracers representing three major classes of macronutrients, namely, carbohydrates, amino acids, and fatty acids. While these birds became postabsorptive (2 h after feeding), we quantified the isotopic enrichment of the lean and lipid fractions of several organs and tissues. We then compared the actual 13C enrichment of various tissue fractions with the predictions of our model to identify instances where nutrients were differentially routed and found that different classes of macronutrients are uniquely routed throughout the body. Recently ingested amino acids were preferentially routed to the lean fraction of the liver, whereas exogenous carbohydrates were routed to the brain and the lipid fraction of the liver. Fatty acids were definitively routed to the heart and the liver, although high levels of palmitic acid were also recovered in the adipose tissue. Tracers belonging to the same class of molecules were not always routed identically, illustrating how this technique is also suited to examine differences in nonoxidative fates of closely related molecules. Overall, this general approach allows researchers to test heretofore unexamined predictions about how animals allocate the nutrients they ingest

    Introduced and Native Congeners Use Different Resource Allocation Strategies to Maintain Performance During Infection

    Get PDF
    Hosts can manage parasitic infections using an array of tactics, which are likely to vary contingent on coevolutionary history between the host and the parasite. Here we asked whether coping ability of congeners that differ in host-parasite coevolutionary history differed in response to experimental infections with a coccidian parasite. House sparrows (Passer domesticus) and gray-headed sparrows (Passer griseus) are sympatric and ecologically similar, but house sparrows are recent colonizers of Kenya, the site of our comparison, whereas gray-headed sparrows are native. We evaluated three variables as barometers of infection coping ability: vertical flight, pectoral muscle size, and fat score. We also measured routing of a dose of 13C-labeled leucine, an essential amino acid, among tissues to compare resource allocation strategies in response to infection. We found that burden effects on performance were minimal in both species, but house sparrows maintained considerably higher burdens than gray-headed sparrows regardless of exposure. House sparrows also had more exogeneous leucine tracer in all tissues after 24 h, demonstrating a difference in the way the two species allocate or distribute resources. We argue that house sparrows may be maintaining larger resource reserves to mitigate costs associated with exposure and infection. Additionally, in response to increased parasite exposure, gray-headed sparrows had less leucine tracer in their spleens and more in their gonads, whereas house sparrows did not change allocation, perhaps indicating a trade-off that is not experienced by the introduced species

    The cis-regulatory map of Shewanella genomes

    Get PDF
    While hundreds of microbial genomes are sequenced, the challenge remains to define their cis-regulatory maps. Here, we present a comparative genomic analysis of the cis-regulatory map of Shewanella oneidensis, an important model organism for bioremediation because of its extraordinary abilities to use a wide variety of metals and organic molecules as electron acceptors in respiration. First, from the experimentally verified transcriptional regulatory networks of Escherichia coli, we inferred 24 DNA motifs that are conserved in S. oneidensis. We then applied a new comparative approach on five Shewanella genomes that allowed us to systematically identify 194 nonredundant palindromic DNA motifs and corresponding regulons in S. oneidensis. Sixty-four percent of the predicted motifs are conserved in at least three of the seven newly sequenced and distantly related Shewanella genomes. In total, we obtained 209 unique DNA motifs in S. oneidensis that cover 849 unique transcription units. Besides conservation in other genomes, 77 of these motifs are supported by at least one additional type of evidence, including matching to known transcription factor binding motifs and significant functional enrichment or expression coherence of the corresponding target genes. Using the same approach on a more focused gene set, 990 differentially expressed genes derived from published microarray data of S. oneidensis during exposure to metal ions, we identified 31 putative cis-regulatory motifs (16 with at least one type of additional supporting evidence) that are potentially involved in the process of metal reduction. The majority (18/31) of those motifs had been found in our whole-genome comparative approach, further demonstrating that such an approach is capable of uncovering a large fraction of the regulatory map of a genome even in the absence of experimental data. The integrated computational approach developed in this study provides a useful strategy to identify genome-wide cis-regulatory maps and a novel avenue to explore the regulatory pathways for particular biological processes in bacterial systems

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    • 

    corecore