304 research outputs found

    SEXUAL SIZE DIMORPHISM OF THE MUSK DUCK

    Get PDF

    Convergent changes in muscle metabolism depend on duration of high-altitude ancestry across Andean waterfowl

    Get PDF
    High-altitude environments require that animals meet the metabolic O2 demands for locomotion and thermogenesis in O2-thin air, but the degree to which convergent metabolic changes have arisen across independent high-altitude lineages or the speed at which such changes arise is unclear. We examined seven high-altitude waterfowl that have inhabited the Andes (3812-4806m elevation) over varying evolutionary time scales, to elucidate changes in biochemical pathways of energy metabolism in flight muscle relative to low-altitude sister-taxa. Convergent changes across high-altitude taxa included increased hydroxyacyl-coA dehydrogenase and succinate dehydrogenase activities, decreased lactate dehydrogenase, pyruvate kinase, creatine kinase, and cytochrome c oxidase activities, and increased myoglobin content. ATP synthase activity increased in only the longest established high-altitude taxa, whereas hexokinase activity increased in only newly established taxa. Therefore, changes in pathways of lipid oxidation, glycolysis, and mitochondrial oxidative phosphorylation are common strategies to cope with high-altitude hypoxia, but some changes require longer evolutionary time to arise

    Consistent changes in muscle metabolism underlie dive performance across multiple lineages of diving ducks

    Get PDF
    Diving animals must sustain high activity with limited O₂ stores to successfully capture prey. Studies suggest that increasing body O₂ stores supports breath-hold diving, but less is known about metabolic specializations that underlie underwater locomotion. We measured maximal activities of 10 key enzymes in locomotory muscles (gastrocnemius and pectoralis) to identify biochemical changes associated with diving in pathways of oxidative and substrate-level phosphorylation and compared them across three groups of ducks—the longest diving sea ducks (eight spp.), the mid-tier diving pochards (three spp.) and the non-diving dabblers (five spp.). Relative to dabblers, both diving groups had increased activities of succinate dehydrogenase and cytochrome c oxidase, and sea ducks further showed increases in citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HOAD). Both diving groups had relative decreases in capacity for anaerobic metabolism (lower ratio of lactate dehydrogenase to CS), with sea ducks also showing a greater capacity for oxidative phosphorylation and lipid oxidation (lower ratio of pyruvate kinase to CS, higher ratio of HOAD to hexokinase). These data suggest that the locomotory muscles of diving ducks are specialized for sustaining high rates of aerobic metabolism, emphasizing the importance of body O₂ stores for dive performance in these species

    Coevolution of Male and Female Genital Morphology in Waterfowl

    Get PDF
    Most birds have simple genitalia; males lack external genitalia and females have simple vaginas. However, male waterfowl have a phallus whose length (1.5–>40 cm) and morphological elaborations vary among species and are positively correlated with the frequency of forced extra-pair copulations among waterfowl species. Here we report morphological complexity in female genital morphology in waterfowl and describe variation vaginal morphology that is unprecedented in birds. This variation comprises two anatomical novelties: (i) dead end sacs, and (ii) clockwise coils. These vaginal structures appear to function to exclude the intromission of the counter-clockwise spiralling male phallus without female cooperation. A phylogenetically controlled comparative analysis of 16 waterfowl species shows that the degree of vaginal elaboration is positively correlated with phallus length, demonstrating that female morphological complexity has co-evolved with male phallus length. Intersexual selection is most likely responsible for the observed coevolution, although identifying the specific mechanism is difficult. Our results suggest that females have evolved a cryptic anatomical mechanism of choice in response to forced extra-pair copulations

    Genomic approaches to understanding population divergence and speciation in birds

    Get PDF
    © 2016 American Ornithologists\u27 Union. The widespread application of high-throughput sequencing in studying evolutionary processes and patterns of diversification has led to many important discoveries. However, the barriers to utilizing these technologies and interpreting the resulting data can be daunting for first-time users. We provide an overview and a brief primer of relevant methods (e.g., whole-genome sequencing, reduced-representation sequencing, sequence-capture methods, and RNA sequencing), as well as important steps in the analysis pipelines (e.g., loci clustering, variant calling, whole-genome and transcriptome assembly). We also review a number of applications in which researchers have used these technologies to address questions related to avian systems. We highlight how genomic tools are advancing research by discussing their contributions to 3 important facets of avian evolutionary history. We focus on (1) general inferences about biogeography and biogeographic history, (2) patterns of gene flow and isolation upon secondary contact and hybridization, and (3) quantifying levels of genomic divergence between closely related taxa. We find that in many cases, high-throughput sequencing data confirms previous work from traditional molecular markers, although there are examples in which genome-wide genetic markers provide a different biological interpretation. We also discuss how these new data allow researchers to address entirely novel questions, and conclude by outlining a number of intellectual and methodological challenges as the genomics era moves forward

    Cardiovascular responses to progressive hypoxia in ducks native to high altitude in the Andes

    Get PDF
    The cardiovascular system is critical for delivering O2 to tissues. Here, we examined the cardiovascular responses to progressive hypoxia in four high-altitude Andean duck species compared with four related low-altitude populations in North America, tested at their native altitude. Ducks were exposed to stepwise decreases in inspired partial pressure of O2 while we monitored heart rate, O2 consumption rate, blood O2 saturation, haematocrit (Hct) and blood haemoglobin (Hb) concentration. We calculated O2 pulse (the product of stroke volume and the arterial–venous O2 content difference), blood O2 concentration and heart rate variability. Regardless of altitude, all eight populations maintained O2 consumption rate with minimal change in heart rate or O2 pulse, indicating that O2 consumption was maintained by either a constant arterial–venous O2 content difference (an increase in the relative O2 extracted from arterial blood) or by a combination of changes in stroke volume and the arterial–venous O2 content difference. Three high-altitude taxa (yellow-billed pintails, cinnamon teal and speckled teal) had higher Hct and Hb concentration, increasing the O2 content of arterial blood, and potentially providing a greater reserve for enhancing O2 delivery during hypoxia. Hct and Hb concentration between low- and high-altitude populations of ruddy duck were similar, representing a potential adaptation to diving life. Heart rate variability was generally lower in high-altitude ducks, concurrent with similar or lower heart rates than low-altitude ducks, suggesting a reduction in vagal and sympathetic tone. These unique features of the Andean ducks differ from previous observations in both Andean geese and bar-headed geese, neither of which exhibit significant elevations in Hct or Hb concentration compared with their low-altitude relatives, revealing yet another avian strategy for coping with high altitude

    Gene Flow and Hybridization between Numerically Imbalanced Populations of Two Duck Species in the Falkland Islands

    Get PDF
    Interspecific hybridization is common in plants and animals, particularly in waterfowl (Anatidae). One factor shown to contribute to hybridization is restricted mate choice, which can occur when two species occur in sympatry but one is rare. The Hubbs principle, or “desperation hypothesis,” states that under such circumstances the rarer species is more likely to mate with heterospecifics. Here we report interspecific hybridization between two waterfowl species that coexist in broad sympatry and mixed flocks throughout southern South America. Speckled teal (Anas flavirostris) and yellow-billed pintails (Anas georgica) are abundant in continental South America, but in the Falkland Islands speckled teal outnumber yellow-billed pintails approximately ten to one. Using eight genetic loci (mtDNA and 7 nuclear introns) coupled with Bayesian assignment tests and relatedness analysis, we identified a speckled teal x yellow-billed pintail F1 hybrid female and her duckling sired by a male speckled teal. Although our sample in the Falkland Islands was small, we failed to identify unequivocal evidence of hybridization or introgression in a much larger sample from Argentina using a three-population “isolation with migration” coalescent analysis. While additional data are needed to determine if this event in the Falkland Islands was a rare singular occurrence, our results provide further support for the “desperation hypothesis,” which states that scarcity in one population and abundance of another will often lead to hybridization

    Protecting children in low-income and middle-income countries from COVID-19

    Get PDF
    CITATION: Ahmed, S. et al. 2020. Protecting children in low-income and middle-income countries from COVID-19. BMJ Global Health, 5:e002844. doi:10.1136/bmjgh-2020-002844.The original publication is available at https://gh.bmj.comA saving grace of the COVID-19 pandemic in high-income and upper middle-income countries has been the relative sparing of children. As the disease spreads across low-income and middle-income countries (LMICs), long-standing system vulnerabilities may tragically manifest, and we worry that children will be increasingly impacted, both directly and indirectly. Drawing on our shared child pneumonia experience globally, we highlight these potential impacts on children in LMICs and propose actions for a collective response.https://gh.bmj.com/content/5/5/e002844.abstractPublisher's versio

    Male-Mediated Gene Flow in Patrilocal Primates

    Get PDF
    BACKGROUND: Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS: Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE: The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos
    corecore