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Diving animals must sustain high activity with limited O2 stores to success-
fully capture prey. Studies suggest that increasing body O2 stores supports
breath-hold diving, but less is known about metabolic specializations that
underlie underwater locomotion. We measured maximal activities of 10
key enzymes in locomotory muscles (gastrocnemius and pectoralis) to ident-
ify biochemical changes associated with diving in pathways of oxidative and
substrate-level phosphorylation and compared them across three groups of
ducks—the longest diving sea ducks (eight spp.), the mid-tier diving
pochards (three spp.) and the non-diving dabblers (five spp.). Relative to
dabblers, both diving groups had increased activities of succinate dehydro-
genase and cytochrome c oxidase, and sea ducks further showed increases in
citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HOAD). Both
diving groups had relative decreases in capacity for anaerobic metabolism
(lower ratio of lactate dehydrogenase to CS), with sea ducks also showing
a greater capacity for oxidative phosphorylation and lipid oxidation (lower
ratio of pyruvate kinase to CS, higher ratio of HOAD to hexokinase).
These data suggest that the locomotory muscles of diving ducks are special-
ized for sustaining high rates of aerobic metabolism, emphasizing the
importance of body O2 stores for dive performance in these species.
1. Introduction
Breath-hold diving presents air-breathing organisms with a suite of physiologi-
cal challenges, including tissue hypoxemia due to apnea during the dive,
recovery after the dive and potential amplification of heat loss in cool water.
Supporting the high levels of aerobic metabolism necessary for successful fora-
ging under these conditions is physiologically taxing due to the decreasing
availability of oxygen (O2) reserves as dive time progresses, creating a potential
mismatch between tissue O2 supply and demand [1].

Themagnitudeof thepotentialmismatchbetweenO2 supplyanddemandhas a
strong bearing on dive capacity. Aerobic metabolism yields far more ATP per mole
of fuel than anaerobicmetabolism, andprevious studies have shown thatmost fora-
ging dives by seals and penguins stay within this aerobic threshold [2–4]. The
aerobic dive limit is extended inmanydiving animals by virtue of having increased
bodyO2 stores, often achievedvia increases inbloodhaemoglobin (Hb) content and
musclemyoglobin (Mb) content [5–8]. It is alsopossible that reductions inmetabolic
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Figure 1. Phylogeny for the 16 species studied here, generated using 10 731 overlapping autosomal ddRAD-seq loci in BEAST v. 2.5.2. Branch lengths were assigned
using treePL. Asterisks indicate corresponding species graphic. Tribes are indicated by colour: sea ducks (dark blue), pochards (teal), dabblers (gold). Dive times were
obtained from several sources in the literature, represented by the following superscripts: a, [23]; b, [24]; c, [25]; d, (Boone JL, LaRue EA 1998, unpublished data); e,
[26]; f, [27]; g, [28]; h, [29]; i, [30].

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231466

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 O

ct
ob

er
 2

02
3 
O2 demands could offset the potential mismatch between O2

supply and demand during diving, thus extending dive times.
However, previous studies have shown that activities of aerobic
enzymes in locomotory muscles, specifically citrate synthase
(CS) and hydroxyacyl-CoA dehydrogenase (HOAD), are often
increased relative to non-locomotory muscles among diving
species, aswell as at the advent of diving (e.g. juvenile penguins
going to sea for the first time) [9–11]. This suggests that at least for
skeletal muscles, high capacities for aerobic metabolism are
needed to synthesize adequate amounts of ATP to fuel diving
locomotion and/or post-dive recovery.

Diving ducks represent a compelling and taxonomically
diverse system in which to study diving adaptations. The
diving ducks are a polyphyletic group in the largest waterfowl
sub-family Anatinae, and include the sea ducks (tribe Mergini)
and the pochards (tribe Aythyini) [12]. Recent phylogenetic
studies based on complete mitochondrial genomes suggested
that the sea ducks represent the more basal of these two
lineages, branching from the rest of theAnatinae approximately
18−20 Ma, while the pochards branched approximately
15−16 Ma within the Anatinae [13,14]. Diving thus evolved
separately in the sea duck and pochard clades, allowing us to
investigate whether they have converged on similar diving
phenotypes as seen in other aspects of their morphology [15].
Sea ducks also contain many of the species considered to be
the strongest divers in terms of both time and depth, including
the long-tailed duck (Clangula hyemalis), which has been caught
in gill nets as deep as 55 m [16]. Across the sea ducks and
pochards represented here, anecdotal observations suggest
that both dive time andmaximumdepth varywidely, although
there has been no standardized methodology for accurately
measuring these variables for most species. The large variation
in dive time across closely related species allows us to
investigate whether diving phenotypes vary by species with
progressively longer dive times.

However, when conducting interspecies comparisons,
there is the potential for phenotypic flexibility among
individuals to confound results. Traits such as enzyme
activity can vary throughout the annual cycle of waterfowl
in response to activities like migration [17], although consist-
ent biochemical patterns have yet to be identified across birds
[18]. Failure to account for this flexibility can therefore influ-
ence interspecific comparisons. One way to minimize this is
to standardize sample collection (e.g. using all wild-caught
individuals, sampling during one point in the annual cycle)
[19]. While phenotypic flexibility among individuals is
unavoidable, this strategy reduces its potential effects when
conducting cross-species comparisons.

Here, we investigate the diving phenotype of multiple
species by examining how the evolution of diving has restruc-
tured pathways of aerobic metabolism and fuel use in the
locomotory muscle. We compared the maximal activities of
10 key enzymes across pathways of glycolysis, fatty acid oxi-
dation, the tricarboxylic acid (TCA) cycle and oxidative
phosphorylation in 16 species of ducks with variable dive
capabilities: the longest and deepest diving sea ducks (eight
spp.), the mid-tier diving pochards (three spp.) and the non-
diving dabblers (five spp.). The 11 diving species studied
here are cited primarily as leg-propelled divers, although
recent evidence shows that the common merganser (Mergus
merganser) also uses wing propulsion [20], so all measurements
were taken in both the gastrocnemius and the pectoralis
muscles. Owing to the interrelatedness and shared evolution-
ary history of these species, all statistical comparisons were
completed using a phylogenetic framework [21,22].
2. Methods
(a) Sample overview
Tissue samples were taken from up to 10 individuals across the
16 species of diving and non-diving ducks (figure 1). All birds
were sampled in Alaska, USA, from ponds and rivers around
Fairbanks, the Denali Highway and the Dalton Highway, as
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well as Prince William Sound and Kodiak across a 3-year period
from 2019 to 2021 (electronic supplementary material, table S1).
We collected samples during spring migration, which lasts
from early March to late May [31], collecting most species in
May and early June, except for harlequin ducks (Histrionicus his-
trionicus) and surf scoters (Melanitta perspicillata), which were
collected in March. We collected species during the same point
in their annual cycle to limit the potential influence of phenoty-
pic plasticity on our interspecific analyses. Tissue samples from
the pectoralis and gastrocnemius muscles were immediately dis-
sected from an intermediate depth (50% muscle depth) and flash
frozen in liquid N2. Samples were then stored at −80°C until
enzymatic analysis was completed (see below).

All specimen collection and import/export were conducted
with permits from the U.S. Fish and Wildlife Service
(MB33283C, MB812229, MB836720), Alaska Department of Fish
and Game (19–091, 19–153, 20–033, 20–091, 21–103), Scottish
Animal Health and Welfare Division (TARP(S) 2022/04), and
Institutional Animal Care and Use Committee (IACUC) from
the University of Miami (17–107, 20–090).

(b) Species phylogeny
We reconstructed a phylogenetic species tree by downloading
and aligning double digest restriction-site associated DNA
sequencing (ddRADseq) data [32] for the 16 study species and
an outgroup species. The ddRADseq data were first aligned
using bioinformatics pipelines outlined in Lavretsky et al. [33]
using Python scripts to automate sequence filtering, alignment
and genotyping using a combination of TRIMMOMATIC [34], BUR-

ROWS WHEELER ALIGNER v. 07.15 [35] and SAMTOOLS v. 1.7 [34].
Using VCFTOOLS v. 0.1.15 [36], we further filtered the sequences
for missing data (greater than 20% of samples), minimum
base-pair depth of coverage of 5× (10× per genotype) and per
base PHRED quality scores of greater than or equal to 30. All
sequences were aligned to a chromosomally assembled wild mal-
lard (Anas platyrhychos) genome [37], which allowed us to
distinguish between autosomal and sex-linked ddRAD-seq loci.
To reconstruct a species tree, we employed the SNAPP func-
tion [38] in the program *BEAST v. 2.5.2 [39]. In short, SNAPP
uses bi-allelic single nucleotide polymorphisms (SNPs) to derive
a posterior distribution of putative species trees by estimating the
probability of allele frequency changes across nodes given the
data. To do so, we first filtered our ddRAD-seq dataset for bi-allelic
SNPs using PLINK v. 1.9 [40], as well as for singletons (i.e. mini-
mum allele frequency (–maf 0.018), any SNP missing greater
than or equal to 20% of data across samples (–geno 0.2), and any
SNPs found to be in linkage disequilibrium (LD) (–indep-pairwise
2 1 0.5). We employed the Hasegawa–Kishino–Yano (HKY) substi-
tution model [41] with a gamma distribution across sites, and with
five of these having some proportion of invariable sites [32]. We
employed a strict molecular clock. SNAPP analysis was run for
100 000 000 iterations, with a burn-in of 100 000 steps, and
sampling occurring every 1000 iterations, to ensure that the effec-
tive sample sizes (ESS) across parameters were greater than or
equal to 100. Burn-in was set to 10% of the total number of
sampled trees, and the final species tree was constructed in R
using phytools [22]. Finally, we dated the phylogeny using
treePL [42], with divergence times obtained from TimeTree [43].

(c) Enzymatic assays
The maximal activities of the 10 metabolic enzymes shown in
figure 2 were assayed as previously described [44,45]. These
included the first and last steps of glycolysis (hexokinase [HK]
and pyruvate kinase [PK]); lactate dehydrogenase (LDH), which
catalyses the interconversion of pyruvate to lactate; citrate synthase
(CS), an enzyme in the TCA cycle and a common marker for mito-
chondrial volume density; succinate dehydrogenase (SDH), an
enzyme in the TCA cycle and Complex II of the electron transport
system; cytochrome c oxidase (COX), Complex IV and the terminal
O2 consumer in the electron transport system, and a common
marker of mitochondrial cristae density; ATP synthase (ATPSyn),
Complex V of oxidative phosphorylation; hydroxyacyl-CoA dehy-
drogenase (HOAD), which catalyses an important step in fatty acid
oxidation; and adenylate kinase (AK) and creatine kinase (CK),
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both involved in substrate-level phosphorylation and intracellular
transfer of high-energy phosphates.

Briefly, frozen tissue samples were homogenized in 20
volumes of ice-cold homogenization buffer (100 mM potassium
phosphate, 1 mM EGTA, 1 mM EDTA, 0.1% Triton X-100; pH
7.2), then centrifuged for 2 min at 2000 r.p.m. The supernatant
was collected and used in the subsequent assays. Each assay
was conducted at avian body temperature (41°C) with substrate
concentrations previously found to be saturating [44]. The sub-
strates and their concentrations used for each enzymatic assay
are listed in electronic supplementary material, table S2. All
chemicals were sourced from Merck (Darmstadt, Germany)
unless otherwise noted. Assays were run in triplicate, and the
change in absorbance was measured using a Spectramax Plus
384 spectrophotometer (Molecular Devices, Sunnyvale, CA,
USA). The maximal activity for each enzyme was calculated as
the difference between the reaction rate with all substrates present
minus the background reaction rate (the rate in the presence of an
inhibitor or without the key substrate) and is reported as units of
micromole substrate per gram tissue (U g−1) per minute.

(d) Haemoglobin and myoglobin concentration
Haemoglobin and myoglobin concentrations are reported in Schell
et al. [46]. Upon collection, whole blood samples were immediately
extracted from birds via cardiac puncture. Blood Hb concentration
([Hb]) was then analysed using a Hemocue 201 +Analyzer (Hemo-
Cue America, Brea, CA, USA), which measures absorbance at
570 and 880 nm, and corrected using the avian correction factor
of −1 g dl−1 [47,48]. Packed cell volume, or haematocrit (Hct),
was measured as the average of four 75 mm heparinized microcen-
trifuge tubes capped and spun for 5 min in a ZIPocrit centrifuge
(LW Scientific, Lawrenceville, GA, USA).

Myoglobin concentration was determined using a modified Rey-
nafarje method [49]. Frozen tissue samples were homogenized in
19.5 volumes of ice-cold homogenization buffer (40 mM potassium
phosphate; pH 6.6), then centrifuged for 99 min at 13 700 r.p.m.
and 4°C [44]. The resulting supernatant was transferred to a 25 ml
boiling flask and exposed to carbon monoxide (CO) for 8 min
under constant rotation. After an addition of sodium dithionite,
CO was bubbled in for a further 2 min to ensure complete reduction
of the myoglobin. Samples were then diluted 19.5× with homo-
genization buffer, and the optical density of each sample was
measured in triplicate with a blank at 538 and 568 nm using a
VWR V1200 Spectrophotometer (VWR, Radnor, PA, USA). Myoglo-
bin concentration ([Mb]; mg g−1) was then determined based on the
following equation: [Mb] = (OD538−OD568) × 112.6 [49].

(e) Dive times
A comprehensive literature search for dive times was performed
for each species. When multiple reported times were found, the
time chosen was prioritized by accounts reporting wild birds
diving in their natural habitat over studies of captive birds.
Where possible, data from the same study were used for multiple
species to account for observer bias. Dive times are reported as
mean dive time and maximum dive time, and we used mean
dive time for each species in our linear mixed models. Dabblers
were assigned dive times of 0 s (figure 1).

( f ) Analysing physiological changes in a phylogenetic
context

All analyses were conducted to account for phylogenetic non-inde-
pendence [50] using the R Statistical Software (v. 4.2.1) [51]. Because
closely related species are not statistically independent, we grouped
species into the three clades (i.e. tribes) with replicates within each
clade (sea ducks, pochards and dabblers). We first identified
which enzymes showed phylogenetic signal by testing for Pagel’s
λ [52]. Principal components analysis (PCA) was next used to visu-
alize and describe differences between tribes and species across all
enzymes in the gastrocnemius only. Phylogenetic ANOVA (phy-
tools, nsim= 1000) [22] followed by post hoc Bonferroni tests were
used to make comparisons between sea ducks, pochards and dab-
blers for all enzymes and ratios of activity between different
enzymes. Enzyme ratios were chosen to assess the relative reliance
on certain metabolic pathways (e.g. LDH:CS to compare anaerobic
versus aerobic metabolism [53], ATPSyn:CS to indicate ATP
production relative to total oxidative capacity) [54]. Enzymes ident-
ified to be significantly different (p< 0.05) or nearly significant
(p < 0.10) between groups in either the pectoralis or gastrocnemius
wereusedasexplanatoryvariables against dive time inphylogenetic
least squares regressions (phytools, correlation = BrownianMotion).
Bodymass, blood [Hb] andmuscle [Mb]were also includedbecause
certain enzymes andoverall dive timehave been shown to scalewith
these or other variables [55].
3. Results
(a) Species tree phylogeny
Our SNAPP species tree was reconstructed using a total of
10 731 overlapping autosomal ddRAD-seq loci that met our
filtering criteria. First, apart from Anas, all genera are mono-
phyletic, with some sister species like lesser scaup (Aythya
affinis) and greater scaup (Aythya marila) diverging less than
1 Ma. One difference from other waterfowl phylogenies
is the placement of sea ducks and pochards sister to each
other, diverging 13.5 Ma, instead of the sea ducks representing
the more basal split and pochards being sister to dabblers,
which is most likely due to the limited number of species
included in our tree. Divergence times of 17.5 Ma for sea
ducks correlate well with other phylogenies [14]. Within the
sea ducks, all species relationships correlate closely with
those found by Lavretsky et al. [32], except the long-tail duck
and harlequin duck, which our tree shows as sister to each
other and the earliest diverging of the sea ducks included
here (9.3 Ma). Finally, our phylogeny puts the northern shove-
ler (Anas clypeata) in a clade with the diving pochards and sea
ducks over dabblers, which could be due to the smaller
number of species included, as northern shoveler is part of
the dabbler clade in other trees with wider taxonomic
sampling [14,56]. Preliminary analyses determined that our
phylogeny did not yield different results from a phylogeny
constrained to previously published topologies [13,14].

(b) Phylogenetic signal
Pagel’s λ has been found to perform better than Blomberg’s K
under the assumption of the Brownian motion model of trait
evolution, so it was chosen to test for phylogenetic signal in
all enzymes measured here [57]. Pagel’s λ indicated that
four enzymes showed phylogenetic signal (λ significantly
different from 0). These included ATPSyn, CS and HOAD
in the gastrocnemius (ps = 0.03, 0.01 and 0.02, respectively)
and SDH in the pectoralis ( p < 0.001).

(c) Enzyme activities in the gastrocnemius
The gastrocnemius appeared to have a significantly higher
oxidative capacity in the sea ducks compared with the
dabblers, with increased activity of CS ( p = 0.008) and COX
( p = 0.03) (figures 3 and 5), which may reflect a correspond-
ing variation in mitochondrial abundance. However, there
may have been a restructuring of oxidative phosphorylation
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in the sea ducks compared with the dabblers, as reflected
by a reduced ATPSyn/CS ratio ( p = 0.015; figure 4). Fuel oxi-
dation capacities were also shifted in the gastrocnemius
between sea ducks and pochards compared with dabblers.
Both sea ducks and pochards showed a significant increase
in HOAD activity ( p = 0.014), a slight increase in the
HOAD/HK ratio ( p = 0.041), and decreases in the PK/CS
( p = 0.01) and LDH/CS ( p = 0.034) ratios, all of which
could reflect an increased capacity for oxidizing lipids rela-
tive to carbohydrates. These differences were reflected in
the PCA. Principle component 1 (PC1), which explained
36.4% of total variation, was the major axis separating the
sea ducks and dabblers. On PC1, high positive loadings for
CS, COX, SDH and HOAD separated the sea ducks from
the negative loadings of PK, LDH, ATPSyn and AK that
characterized the dabblers (figure 5). In the pochards,
enzyme activity was generally intermediate between the sea
ducks and dabblers, which is also visible in the PCA along
PC1 (figure 5).

(d) Pectoralis enzyme activity
Similar to the gastrocnemius, sea ducks and pochards
exhibited decreased LDH/CS activity ratios in the pectoralis
( p = 0.026; figure 4 and table 2), which may reflect a consist-
ent decrease in the relative capacity for anaerobic metabolism
across muscles in these two diving groups relative to dab-
blers. There may have also been a restructuring of oxidative
phosphorylation in the pectoralis of both the sea ducks and
pochards, as reflected by increased SDH activity (p = 0.001;
figure 3 and table 1) and decreased ATPSyn/CS ratio ( p =
0.011; figure 4 and table 2).
(e) Phylogenetic generalized least-squares analysis
of dive time

Select enzyme activities in the pectoralis or gastrocnemius, O2

carrying capacity ([Hb], [Mb]), and body mass were used as
explanatory variables against dive time in phylogenetic least
squares regressions (see Methods). In preliminary analyses,
[Hb] and Hct were shown to be strongly collinear (r2 =
0.505, p < 0.001), so only [Hb] was retained in our models
as an indicator of blood O2 carrying capacity. The best-fitting
model (lowest AIC) to estimate dive time included all vari-
ables of interest: [Hb], [Mb] in the gastrocnemius, mass, the
three enzymes in the gastrocnemius (HOAD, CS, COX) or
pectoralis (SDH) that were significantly different between
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Figure 4. Enzyme activity ratios in three tribes of ducks: sea ducks (diving, eight spp., n = 72), pochards (diving, three spp., n = 30) and dabblers (non-diving, five
spp., n = 50). Box plots show the median and quartile ranges of the data, with the mean indicated by the dashed line. There were significant decreases in the ratios
in the sea ducks compared with the dabblers for ATPSyn:CS in both the (a) pectoralis and (b) gastrocnemius; in LDH:CS in the (c) pectoralis and (d ) gastrocnemius;
and in PK:CS in the (e) gastrocnemius. ( f ) HOAD:HK in the gastrocnemius is higher in the sea ducks than in the pochards. Bonferroni post hoc tests (*p < 0.05) were
used after a phylogenetic ANOVA (for which p-values are shown on each panel).
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the sea ducks and pochards versus dabblers, and the two
almost significantly different enzymes (SDH, HK, p < 0.10)
in the gastrocnemius (electronic supplementary material,
table S3). In this model, none of the variables was a significant
predictor of dive time. Removal of SDH activity in the pector-
alis to focus only on changes in the gastrocnemius only
decreased the AIC by 0.3 (104.16 versus 104.46). When only
gastrocnemius enzyme activity was considered, the increase
in oxidative capacity seen in the sea ducks and pochards, as
indicated by increased CS activity, was found to be the most
significant predictor of dive time overall (p = 0.0379).
4. Discussion
Our results show significant remodelling of metabolic path-
ways in the locomotory muscle of the sea ducks, with a
generally intermediate phenotype seen in the pochards. CS
and COX are known to be biochemical indicators of mito-
chondrial abundance, and CS activity in the gastrocnemius
was the best predictor of dive time [58–60]. Because CS and
COX activities were increased in the sea ducks, an increase
in the overall capacity for oxidative phosphorylation may
be critical for increasing dive performance. HOAD was



Table 1. Maximal activities of 10 metabolic enzymes in the pectoralis and gastrocnemius of 16 duck species, grouped by tribe: sea ducks (diving, eight spp.,
n = 72), pochards (diving, three spp., n = 30) and dabblers (non-diving, five spp., n = 50). All activities are in μmol g−1 tissue min−1 (U g−1). Hexokinase
(HK); pyruvate kinase (PK); lactate dehydrogenase (LDH); hydroxyacyl-CoA dehydrogenase (HOAD); citrate synthase (CS); succinate dehydrogenase (SDH);
cytochrome c oxidase (COX); ATP synthase (ATPSyn); creatine kinase (CK); adenylate kinase (AK). Data are shown as mean ± s.e.m. †Significantly different from
dabblers in phylogenetic ANOVA Bonferroni post hoc tests ( p < 0.05).

pectoralis gastrocnemius

sea ducks pochards dabblers sea ducks pochards dabblers

glycolysis and lactate production

HK 0.39 ± 0.02 0.29 ± 0.02 0.36 ± 0.02 1.16 ± 0.03 1.61 ± 0.09 1.09 ± 0.04

PK 1053.36 ± 15.65 1022.13 ± 30.80 1066.54 ± 16.71 907.34 ± 15.44 946.84 ± 26.10 967.77 ± 18.05

LDH 466.35 ± 20.19 391.99 ± 19.37 576.31 ± 23.39 399.31 ± 10.36 354.90 ± 17.41 411.21 ± 12.27

beta-oxidation

HOAD 8.78 ± 0.08 8.55 ± 0.20 8.33 ± 0.18 5.93 ± 0.09 † 4.76 ± 0.20 4.45 ± 0.11

citric acid cycle

CS 168.23 ± 3.53 153.85 ± 4.51 134.32 ± 4.92 83.41 ± 1.92 † 67.28 ± 3.68 52.13 ± 2.09

electron transport system

SDH 29.17 ± 0.80 † 28.28 ± 1.33 † 19.49 ± 0.59 15.55 ± 0.64 12.38 ± 0.78 9.30 ± 0.52

COX 289.30 ± 19.77 382.10 ± 22.08 178.96 ± 13.35 117.00 ± 5.04 † 125.14 ± 7.85 58.69 ± 3.51

ATPSyn 566.44 ± 14.93 546.21 ± 24.40 673.64 ± 16.16 582.00 ± 16.66 567.19 ± 22.68 671.97 ± 18.36

substrate-level phosphorylation

CK 15.43 ± 0.91 15.59 ± 1.11 24.74 ± 0.78 35.38 ± 1.19 44.19 ± 3.25 34.06 ± 0.86

AK 972.54 ± 22.12 847.98 ± 25.05 1035.00 ± 24.81 952.74 ± 29.94 928.44 ± 40.79 1127.81 ± 29.72

Table 2. Enzyme activity ratios in the pectoralis (P) and gastrocnemius (G) for 16 species of diving and non-diving ducks, grouped by tribe: sea ducks (diving,
eight spp., n = 72), pochards (diving, three spp., n = 30) and dabblers (non-diving, five spp., n = 50). Hexokinase (HK); lactate dehydrogenase (LDH);
hydroxyacyl-CoA dehydrogenase (HOAD); citrate synthase (CS); succinate dehydrogenase (SDH); cytochrome c oxidase (COX); ATP synthase (ATPSyn). Data are
shown as mean ± s.e.m. †Significantly different from dabblers in phylogenetic ANOVA Bonferroni post hoc tests; *significantly different from pochards in
phylogenetic ANOVA Bonferroni post hoc tests ( p < 0.05).

muscle tribe CS:HOAD LDH:CS PK:CS PK:LDH SDH:CS COX:CS ATPSyn:CS HOAD:HK

P sea ducks 19.20 ± 0.38 2.85 ± 0.13 6.48 ± 0.18 2.57 ± 0.12 0.179 ± 0.006 1.76 ± 0.13 3.42 ± 0.13 † 29.71 ± 1.98

pochards 18.17 ± 0.59 2.57 ± 0.11 6.75 ± 0.21 2.73 ± 0.11 0.187 ± 0.010 2.52 ± 0.16 3.57 ± 0.14 36.69 ± 3.61

dabblers 16.17 ± 0.52 4.73 ± 0.33 8.67 ± 0.48 1.99 ± 0.08 0.154 ± 0.008 1.52 ± 0.19 5.51 ± 0.31 30.13 ± 3.24

G sea ducks 14.23 ± 0.36 5.07 ± 0.22† 11.28 ± 0.32† 2.38 ± 0.07 0.188 ± 0.006 1.42 ± 0.06 7.37 ± 0.33† 5.29 ± 0.14*

pochards 14.33 ± 0.61 5.73 ± 0.43 15.04 ± 0.76 2.86 ± 0.16 0.190 ± 0.012 1.90 ± 0.10 9.08 ± 0.57 3.24 ± 0.24

dabblers 11.86 ± 0.46 8.65 ± 0.48 20.38 ± 1.13 2.46 ± 0.10 0.186 ± 0.011 1.15 ± 0.07 14.21 ± 0.81 4.24 ± 0.14
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also elevated in the longer diving sea ducks, which could
suggest a relative shift in the capacity for oxidizing lipids
over carbohydrates.
(a) Mitochondrial oxidative capacity
COX and CS activities were increased in the gastrocnemius of
sea ducks, and CS activity in the gastrocnemius was the best
predictor of dive time. As primarily leg-propelled divers, the
increases in CS and COX in the gastrocnemius (the primary
diving muscle) probably reflect an increased mitochondrial
abundance, which is probably important for maximizing
aerobic ATP supply to the muscle during locomotion. A simi-
lar trend is seen in pinnipeds, with increases in CS activity
seen in swimming versus non-swimming muscles [10], and
in penguin locomotory muscles as they transition from the
nest to begin foraging at sea for themselves [11]. These find-
ings suggest that mitochondrial O2 supply remains critical to
maintaining aerobic metabolism while diving. Indeed, in the
closely related tufted duck (Aythya fuligula), blood flow to the
leg muscles was five times higher during a dive compared
with resting levels, which probably helps meet the high
demands for transporting circulatory O2 stores to the work-
ing muscle [61].

Myoglobin is important in muscles as both an intracellu-
lar O2 store and a facilitator of intracellular O2 diffusion.
Work on both the tufted duck and marine mammals has
shown that myoglobin content ([Mb]) is generally higher in
swimming versus non-swimming muscles [5,62,63]. [Mb] is
also higher in the sea ducks compared with the dabblers
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[46], which would increase muscular O2 availability during
the dive, further extending aerobic dive times. Since we did
not see consistent changes in the activities of either CK or
AK, increased capacities for cytoplasmic ATP buffering and
substrate-level phosphorylation do not appear to contribute
to increases in dive capacity.

The increases in both CS and COX activity were not
matched by an equivalent increase in ATP synthase activity,
as evidenced by the decrease in the ATPSyn:CS ratio in the
sea ducks and pochards. Interestingly, this trend was seen
in both the gastrocnemius and pectoralis and could represent
a specific diving phenotype in the muscle generally. How-
ever, ATP synthase activity remained relatively high across
all three clades, and differences seen in the ATPSyn:CS ratio
reflect the higher CS activity in the sea ducks and pochards.
As a key enzyme involved in the first step of the TCA cycle,
which provides energy-rich NADH and FADH2 to the elec-
tron transport chain, this increase in CS could function to
maximize electrons funnelled into oxidative phosphorylation
and creation of the protonmotive force for ATP synthesis. The
lower ratio of ATP synthase to CS could also be indicative of
an increase in the proportion of subsarcolemmal mitochon-
dria, the subfraction of mitochondria located next to the cell
membrane, which have a lower overall activity of ATP
synthase compared with intermyofibrillar mitochondria
[64]. Because subsarcolemmal mitochondria are adjacent to
capillaries, their preferential enrichment may be useful for
taking advantage of blood O2 stores during diving.
(b) Capacities for oxidizing different metabolic fuels
Sea ducks and pochards had significantly elevated HOAD
activity in the gastrocnemius in comparison with dabblers,
probably reflecting a higher capacity for fuelling aerobic
metabolism with fatty acids. Both sea ducks and pochards
prey mostly on molluscs, crustaceans and fish, which gener-
ally have a higher lipid content than the vegetation
preferred by the dabblers [65,66]. An increase in dietary
lipids in birds is thought to upregulate the expression of
aerobic enzymes, with positive correlations shown for both
CS and HOAD [67,68]. Associated with the increase in
HOAD activity in the sea ducks and pochards, we observed
a small but significant increase in HOAD:HK and decreases
in both PK:CS and LDH:CS, suggesting that the relative
capacity for oxidizing carbohydrates is not similarly
increased. Thus the mitochondria of diving birds may be
specialized for lipid metabolism during breath-hold dives
and/or between dive recovery.

If the increased capacity for fatty acid oxidation is
reflected by increases in fatty acid use during dives, it
could suggest that muscle metabolism is not restructured to
maximally conserve O2. Fatty acid oxidation requires more
O2 per mole ATP compared with carbohydrates, and a prefer-
ence for carbohydrates is a strategy used by some taxa to
improve exercise performance under low O2 conditions
[55,69,70]. Mitochondrial fuel oxidation capacity differs
between mitochondrial subfractions, with subsarcolemmal
mitochondria having a greater relative capacity for oxidizing
fats over carbohydrates compared with intermyofibrillar
mitochondria [64,71,72]. Therefore, the differences in
HOAD activity in diving ducks could also reflect an
increased abundance of subsarcolemmal mitochondria in
the muscle. Further investigations into mitochondrial
distribution would confirm if this is in fact the case.

(c) Metabolic changes in the long-tailed duck, the most
extreme diver

Within the sea ducks, the long-tailed duck has the greatest dive
time and dive depth [16], making it one of the strongest divers
amongst species studied here. In addition, they were also one
of the most distinct groupings along PC1 of the PCA
(figure 5b). Compared with the other sea ducks, the long-
tailed duck had the greatest CS and SDH activities and the
lowest ATP synthase activity in the gastrocnemius (electronic
supplementary material, table S4). The long-tailed duck was
also an outlier for the activity of several enzymes in the pector-
alis (electronic supplementarymaterial, table S4). This suggests
that the consistent remodeling of metabolic pathways that we
observed in sea ducks is pushed to the extreme in the deepest
diving duck among the group.
5. Conclusion
The locomotory muscles of sea ducks and pochards, but
especially the sea ducks, appear to be specialized to sustain
high rates of aerobic metabolism during diving locomotion.
The combined increases in CS and COX activity probably
reflect high overall capacities for oxidative phosphorylation,
and high HOAD activities may enable high rates of lipid oxi-
dation. Our findings also emphasize the importance of body
O2 stores for extending dive capacity in diving ducks,
because we found no evidence that diving ducks had consist-
ently greater capacities for anaerobic metabolism or
substrate-level phosphorylation. The present study highlights
some of the key metabolic specializations that support
increased dive performance across many species of special-
ized diving waterfowl.
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