808 research outputs found

    DINE: A Framework for Deep Incomplete Network Embedding

    Get PDF
    Network representation learning (NRL) plays a vital role in a variety of tasks such as node classification and link prediction. It aims to learn low-dimensional vector representations for nodes based on network structures or node attributes. While embedding techniques on complete networks have been intensively studied, in real-world applications, it is still a challenging task to collect complete networks. To bridge the gap, in this paper, we propose a Deep Incomplete Network Embedding method, namely DINE. Specifically, we first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework. To improve the embedding performance, we consider both network structures and node attributes to learn node representations. Empirically, we evaluate DINE over three networks on multi-label classification and link prediction tasks. The results demonstrate the superiority of our proposed approach compared against state-of-the-art baselines.Comment: 12 pages, 3 figure

    DINE : a framework for deep incomplete network embedding

    Get PDF
    Network representation learning (NRL) plays a vital role in a variety of tasks such as node classification and link prediction. It aims to learn low-dimensional vector representations for nodes based on network structures or node attributes. While embedding techniques on complete networks have been intensively studied, in real-world applications, it is still a challenging task to collect complete networks. To bridge the gap, in this paper, we propose a Deep Incomplete Network Embedding method, namely DINE. Specifically, we first complete the missing part including both nodes and edges in a partially observable network by using the expectation-maximization framework. To improve the embedding performance, we consider both network structures and node attributes to learn node representations. Empirically, we evaluate DINE over three networks on multi-label classification and link prediction tasks. The results demonstrate the superiority of our proposed approach compared against state-of-the-art baselines. © 2019, Springer Nature Switzerland AG.E

    Epidemic space

    Get PDF
    The aim of this article is to highlight the importance of 'spatiality' in understanding the materialization of risk society and cultivation of risk sensibilities. More specifically it provides a cultural analysis of pathogen virulence (as a social phenomenon) by means of tracing and mapping the spatial flows that operate in the uncharted zones between the microphysics of infection and the macrophysics of epidemics. It will be argued that epidemic space consists of three types of forces: the vector, the index and the vortex. It will draw on Latour's Actor Network Theory to argue that epidemic space is geared towards instability when the vortex (of expanding associations and concerns) displaces the index (of finding a single cause)

    Prevalence and Risk Factors of Lassa Seropositivity in Inhabitants of the Forest Region of Guinea: A Cross-Sectional Study

    Get PDF
    Lassa fever is a viral haemorrhagic fever endemic in West Africa, mainly transmitted to humans by multimammate rats. Several modes of virus transmission are suspected: aerosolisation of the virus, contact with infected rodent excreta, and consumption of rodent meat. Person-to-person transmission also occurs via contact with body fluids of infected persons (blood, urine) and is responsible for numerous outbreaks, mostly in healthcare facilities. Our objective was to precisely describe risk factors for Lassa fever in both rural and urban communities of forest Guinea. For each participant, a standardized questionnaire was completed and a blood sample tested for Lassa virus antibodies. A total of 1424 subjects were interviewed and 977 blood samples tested. The prevalence of Lassa virus antibodies was estimated at 12.9% and 10.0% in rural and urban areas, respectively. The two risk factors were: to have, in the past twelve months, undergone an injection, or lived with someone displaying a haemorrhage. Contrary to our expectation, no factors related to contact with rodents were identified. It is still probable that transmission occurs via indirect contact between rodents and humans in households, but our results highlight the importance of person-to-person transmission via close contact and nosocomial exposure

    Stampidine prevents mortality in an experimental mouse model of viral hemorrhagic fever caused by lassa virus

    Get PDF
    BACKGROUND: The potential use of microorganisms as agents of biological warfare (BW) is a growing concern. Lassa virus, a member of the Arenavirus class of Hemorrhagic fever (HF) viruses has emerged as a worldwide concern among public health officials. The purpose of the present study was to further elucidate the antiviral activity spectrum of stampidine, a novel nucleoside analog with potent anti-viral activity against the immunodeficiency viruses HIV-1, HIV-2, and FIV, by examining its effects on survival of mice challenged with Lassa virus. METHODS: We examined the therapeutic effect of Stampidine in CBA mice inoculated with intracerebral injections of the Josiah strain of Lassa virus. Mice were treated either with vehicle or nontoxic doses of stampidine administered intraperitoneally 24 hours prior to, 1 hour prior to, and 24 hours, 48 hours, 72 hours, and 96 hours after virus inoculation. RESULTS: The probability of survival following the Lassa challenge was significantly improved for stampidine treated mice (Kaplan Meier, Chi-squared = 11.7, df = 2, Log-Rank p-value = 0.003). CONCLUSION: Therefore, stampidine shows clinical potential as a new agent for treatment of viral hemorrhagic fevers caused by Lassa virus

    T Cell-Dependence of Lassa Fever Pathogenesis

    Get PDF
    Lassa virus (LASV), the causative agent of Lassa fever (LF), is endemic in West Africa, accounting for substantial morbidity and mortality. In spite of ongoing research efforts, LF pathogenesis and mechanisms of LASV immune control remain poorly understood. While normal laboratory mice are resistant to LASV, we report that mice expressing humanized instead of murine MHC class I (MHC-I) failed to control LASV infection and develop severe LF. Infection of MHC-I knockout mice confirmed a key role for MHC-I-restricted T cell responses in controlling LASV. Intriguingly we found that T cell depletion in LASV-infected HHD mice prevented disease, irrespective of high-level viremia. Widespread activation of monocyte/macrophage lineage cells, manifest through inducible NO synthase expression, and elevated IL-12p40 serum levels indicated a systemic inflammatory condition. The absence of extensive monocyte/macrophage activation in T cell-depleted mice suggested that T cell responses contribute to deleterious innate inflammatory reactions and LF pathogenesis. Our observations in mice indicate a dual role for T cells, not only protecting from LASV, but also enhancing LF pathogenesis. The possibility of T cell-driven enhancement and immunopathogenesis should be given consideration in future LF vaccine development

    Bacterial activity in cystic fibrosis lung infections

    Get PDF
    BACKGROUND: Chronic lung infections are the primary cause of morbidity and mortality in Cystic Fibrosis (CF) patients. Recent molecular biological based studies have identified a surprisingly wide range of hitherto unreported bacterial species in the lungs of CF patients. The aim of this study was to determine whether the species present were active and, as such, worthy of further investigation as potential pathogens. METHODS: Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiles were generated from PCR products amplified from 16S rDNA and Reverse Transcription Terminal Restriction Fragment Length Polymorphism (RT-T-RFLP) profiles, a marker of metabolic activity, were generated from PCR products amplified from 16S rRNA, both extracted from the same CF sputum sample. To test the level of activity of these bacteria, T-RFLP profiles were compared to RT-T-RFLP profiles. RESULTS: Samples from 17 individuals were studied. Parallel analyses identified a total of 706 individual T-RF and RT-T-RF bands in this sample set. 323 bands were detected by T-RFLP and 383 bands were detected by RT-T-RFLP (statistically significant; P ≤ 0.001). For the group as a whole, 145 bands were detected in a T-RFLP profile alone, suggesting metabolically inactive bacteria. 205 bands were detected in an RT-T-RFLP profile alone and 178 bands were detected in both, suggesting a significant degree of metabolic activity. Although Pseudomonas aeruginosa was present and active in many patients, a low occurrence of other species traditionally considered to be key CF pathogens was detected. T-RFLP profiles obtained for induced sputum samples provided by healthy individuals without CF formed a separate cluster indicating a low level of similarity to those from CF patients. CONCLUSION: These results indicate that a high proportion of the bacterial species detected in the sputum from all of the CF patients in the study are active. The widespread activity of bacterial species in these samples emphasizes the potential importance of these previously unrecognized species within the CF lung

    Use of Recombinant Adenovirus Vectored Consensus IFN-α to Avert Severe Arenavirus Infection

    Get PDF
    Several arenaviruses can cause viral hemorrhagic fever, a severe disease with case-fatality rates in hospitalized individuals ranging from 15-30%. Because of limited prophylaxis and treatment options, new medical countermeasures are needed for these viruses classified by the National Institutes of Allergy and Infectious Diseases (NIAID) as top priority biodefense Category A pathogens. Recombinant consensus interferon alpha (cIFN-α) is a licensed protein with broad clinical appeal. However, while cIFN-α has great therapeutic value, its utility for biodefense applications is hindered by its short in vivo half-life, mode and frequency of administration, and costly production. To address these limitations, we describe the use of DEF201, a replication-deficient adenovirus vector that drives the expression of cIFN-α, for pre- and post-exposure prophylaxis of acute arenaviral infection modeled in hamsters. Intranasal administration of DEF201 24 h prior to challenge with Pichindé virus (PICV) was highly effective at protecting animals from mortality and preventing viral replication and liver-associated disease. A significant protective effect was still observed with a single dosing of DEF201 given two weeks prior to PICV challenge. DEF201 was also efficacious when administered as a treatment 24 to 48 h post-virus exposure. The protective effect of DEF201 was largely attributed to the expression of cIFN-α, as dosing with a control empty vector adenovirus did not protect hamsters from lethal PICV challenge. Effective countermeasures that are highly stable, easily administered, and elicit long lasting protective immunity are much needed for arena and other viral infections. The DEF201 technology has the potential to address all of these issues and may serve as a broad-spectrum antiviral to enhance host defense against a number of viral pathogens

    Error bounds for monomial convexification in polynomial optimization

    Get PDF
    Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0,1]n[0,1]^n. This implies additive error bounds for relaxing a polynomial optimization problem by convexifying each monomial separately. Our main error bounds depend primarily on the degree of the monomial, making them easy to compute. Since monomial convexification studies depend on the bounds on the associated variables, in the second part, we conduct an error analysis for a multilinear monomial over two different types of box constraints. As part of this analysis, we also derive the convex hull of a multilinear monomial over [−1,1]n[-1,1]^n.Comment: 33 pages, 2 figures, to appear in journa

    The Impact of Human Conflict on the Genetics of Mastomys natalensis and Lassa Virus in West Africa

    Get PDF
    Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease
    • …
    corecore