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Abstract. Network representation learning (NRL) plays a vital role in a
variety of tasks such as node classification and link prediction. It aims to
learn low-dimensional vector representations for nodes based on network
structures or node attributes. While embedding techniques on complete
networks have been intensively studied, in real-world applications, it is
still a challenging task to collect complete networks. To bridge the gap, in
this paper, we propose a Deep Incomplete Network Embedding method,
namely DINE. Specifically, we first complete the missing part including
both nodes and edges in a partially observable network by using the
expectation-maximization framework. To improve the embedding per-
formance, we consider both network structures and node attributes to
learn node representations. Empirically, we evaluate DINE over three
networks on multi-label classification and link prediction tasks. The re-
sults demonstrate the superiority of our proposed approach compared
against state-of-the-art baselines.

Keywords: Incomplete network embedding · Network completion ·
Network representation learning · Deep learning.

1 Introduction
Information networks (e.g. citation networks, social networks, biological net-
works) contain different types of entities and intricate relations. Analyzing these
networks plays an important role in many disciplines [29]. For example, in ci-
tation networks, we can find influential entities (i.e., scholars, papers) by cal-
culating the importance of vertices [2, 5]. In social networks, clustering users
into communities is useful for recommendation [25, 26]. In biological networks,
measuring the similarity between proteins helps us better understand protein in-
teractions [27]. However, with the increase of entities and relations in real-world
networks, it is challenging to explore the underlying network structures.

To find an efficient way to model networks, researchers focus on network
representation learning (NRL). NRL aims to learn latent, low-dimensional rep-
resentations for nodes, with preserving not only network topologies but also
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Fig. 1. The overview of DINE framework.

node contents. Perozzi et al. [19] first combine NRL with skip-gram and propose
Deepwalk, which lays a solid foundation for future development in this area.
Recent advances in NRL have witnessed powerful representations abilities such
as DeepGL [20], DANE [7]. Taking advantage of its powerful representation
ability to model complex structures, NRL achieves significant performance in
downstream tasks such as node classification [3, 30], link prediction [8, 16], and
network visualization [21].

In practice, many real-world networks are incomplete [14], which further
complicates the embedding process. For example, citation networks are usually
incomplete because it is impossible for academic search engines to collect every
paper. In biological networks, there exist a huge amount of undiscovered links
because of the complexity of gene expression. Analyzing incomplete network
makes a deviation because only a part of links are observed, which alters our
estimates of network-level statistics. To fill this gap, researchers focus on network
completion problem, which makes use of observed connectivity patterns to infer
the missing part. However, existing studies only pay attention to missing links
inference [6,11], few of them focus on the incomplete networks with both missing
nodes and edges [13].

To solve the problem, we present a new framework, named DINE for deep
incomplete network embedding. DINE intelligently combines network comple-
tion and NRL into a unified framework. As shown in Fig. 1, DINE contains two
pivotal steps, including network recovery and network embedding. Specially,
we first capture the connectivity patterns from the partially observable net-
work and fit the generative graphs model to estimate missing components. To
model the network more accurately, we consider both network structures and
node attributes to learn the representations of the recovered network by using
a deep autoencoder. Finally, we empirically verify the performance of the pro-
posed framework on three real-world networks. Experimental results illustrate
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the significant representation ability of DINE in partially observable networks.
Our main contributions can be concluded as follows:

(1) We present a new framework, namely DINE, for deep incomplete network
embedding. DINE intelligently combines network completion and NRL into
a unified framework, which provides an effective solution for data missing.

(2) DINE considers not only topology structure but also node attributes for
embedding. It can accurately and effectively model node proximity and un-
derlying structure in the joint space.

(3) We extensively validate the framework on three real-world networks through
multi-label classification and link prediction tasks. The results demonstrate
the superiority of our proposed approach compared with state-of-the-art
baselines.

The remainder of this paper is organized as follows. Section 2 summarizes
related work. In section 3, we focus on problem definition. Section 4 introduces
the implementation details of the proposed framework. Experimental results are
provided in section 5. Finally, we conclude this work in section 6.

2 Related Work

The framework we proposed in this paper is related to two areas of research,
including network completion and NRL techniques.

2.1 Network Completion

Network completion deals with the problem of inferring missing nodes and edges
in networks. Network completion is similar to matrix completion [12], which aims
to complete the matrix with elements missing. However, network completion is
more arduous because of network diversity. For missing edges, it is an attractive
way to recover the original network by calculating node similarity. Another way
to complete missing edges is considering shared node neighbors [4]. In cases
where both nodes and edges are missing, we can utilize a generative graphs
model named KronFit [15] to generate complete networks whose structures are
similar to real-world networks. Kim et al. [13] combine expectation-maximization
into KronFit, and propose a powerful algorithm KronEM, which is more effective
for recovering the network.

2.2 Network Representation Learning

NRL aims to embed each node in the network into a low-dimensional representa-
tion. Existing NRL algorithms can be divided into four categories. The first cate-
gory is matrix factorization based methods. They first represent the connections
between network vertices and use matrix factorization to obtain representations.
IsoMAP [23] constructs an affinity network by feature vectors. It represents nodes
with the solved leading eigenvectors. The second category is random walk based
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Table 1. The description of notations

Notation Description

NG number of nodes in the complete network
N ′ number of nodes in the incomplete network
NM number of missing nodes
NR number of recovered nodes
xt input of network structure view T
xp input of node attribute view P
xt̂t reconstruction output of xt by self-view
xt̂p reconstruction output of xt by cross-view
xp̂t reconstruction output of xp by self-view
xp̂p reconstruction output of xp by cross-view
K number of encoding layers

yt(K) representation in network structure view T

yp(K) representation in node attribute view P
α balance reconstruction errors of self-view and cross-view
β balance reconstruction errors of G′ and GM

methods. DeepWalk [19] utilizes random walk to learn structural information
and uses skip-gram to obtain the representations. Node2vec [10] changes the
strategy of random walk to capture a more global structure. The third category
is edge modeling based methods. They utilize node-node connections to learn
node representations directly. LINE [22] uses first-order proximity and second-
order proximity to obtain local and global structure information. The fourth
category is deep learning based methods. They could extract highly non-linear
structure automatically by using deep learning techniques. SDNE [24] preserves
first and second order proximities for highly non-linear structures via a deep
autoencoder.

3 Preliminary

In this section, we first describe the notations used in this paper. We then for-
malize the problem of network embedding in an incomplete network.

3.1 Notations

We denote the complete network as G = (V ,A,P), where V =
{
v1, v2, ..., v|V |

}
indicates the nodes in the network. A ∈ R|V |×|V | represents the adjacency matrix
and P ∈ R|V |×|P | denotes the node attribute matrix, where |V | and |P | represent
the dimension of adjacency matrix and node attributes, respectively. Similarly,
we define the incomplete network, the missing network, and recovered network
as G ′ = (V ′,A′,P ′), GM = (VM ,AM ,PM ), GR = (VR,AR,PR), respectively.
Table 1 lists the meaning of the notations mainly used in this paper.
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3.2 Problem Formulation

The purpose of network completion is to infer the missing part of the incomplete
network, how to infer the missing network GM from the observable network G ′

is crucial to the problem. If we use adjacency matrices to represent the network,
then the network completion problem can be transformed into matrix completion
problem. In general, classical matrix completion problem is to determine the
value (0 or 1) of elements in the missing part in a binary matrix. In this paper,
we assume that the number of missing nodes is known. If not, the standard
methods for estimating the size of hidden (missing) populations can solve this
problem [17].

Although network recovering helps in representing the incomplete network,
there are some problems in the representation learning process. On the one hand,
many network representation methods are shallow models. Network complete-
ness is essential for extracting local or global topology information. On the other
hand, most methods can’t capture non-linear relations between nodes [24]. Thus,
we need to consider not only topology information for non-linear relations but
also node contents such as node attributes. Besides, A′ and P ′ preserve the in-
formation of a network, which is used to represent the network in the joint space.
Thus, nodes with similar topology structures or attributes will be closer in the
representation dimension.

4 Design of DINE

In this section, we present a novel framework, namely DINE, to solve the prob-
lem of network embedding in incomplete networks. Our framework contains two
crucial components, network recovery and network embedding. Firstly, we dis-
cuss how to recover the incomplete network. Then, we introduce the process of
network representation learning, which considers both topology information and
node attributes.

4.1 Recovery of Incomplete Network

To recover the network with nodes and edges missing, we model the incomplete
network with the Kronecker graphs model [15]. In detail, we use the incomplete
network to fit the Kronecker graphs model in network structure and estimate
the missing part, and then re-estimate model parameters. These two steps are
iterated until the model parameters converge. Finally, we obtain the missing part
of the network.

The purpose of the network completion is to find the most likely structure
of the missing part GM . We connect the incomplete network and the missing
network by network generation parameters Θ. Let σ denote the mapping among
nodes in the recovered network, incomplete network, and missing network. The
mapping σ indicates a permutation of set {1, ..., NG}. The first N ′ elements of σ
map the nodes of GR to the incomplete network and the remaining NM elements
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of σ map the nodes of missing part GM . The likelihood P (G′, GM , σ|Θ) can be
represented as:

P
(
G′, GM , σ|Θ

)
=

∏
auv=1

[
Θk

]
σ(u)σ(v)

∏
auv=0

(
1−

[
Θk

]
σ(u)σ(v)

)
(1)

where Θk is the adjacency matrix generated by model parameters Θ.
[
Θk

]
σ(u)σ(v)

denotes the (σ (u) , σ (v))-th element of matrix Θk. auv is the (u, v)-th element
of AR, which is the the adjacency matrix of the recovered network.

Next, we consider the edges in the missing part and σ as the latent variables.
E-step is to sample the missing part and permutation. M-step aims to optimize
the parameters Θ by stochastic gradient descent process. Then we iterate E-step
and M-step until parameters Θ converge. The steps could be described as:

E-step :

(G
(t)
M , σ(t)) ∼ P (GM , σ|G′, Θ(t)) (2)

M-step :

Θ(t+1) = argmax
Θ∈(0,1)2

E[P (G
(t)
M , σ(t), G′|Θ)]. (3)

In detail, we first initialize model parameters Θ and generate a stochastic
network. Then we sample the missing part GM and node mapping σ by Gibbs
sampling, which can be considered to recover the missing part of the network.
Besides, we optimize the model parameters Θ and iterate the above steps until
the parameters converge. Finally, we obtain the most likely instances of the
missing part and node mapping.

4.2 Recovered Network Embedding MVC-DNER

In terms of network representation, we consider not only network topology struc-
ture but also node attributes. Furthermore, inspired by MVC-DNE [28] which
utilizes a deep autoencoder, we propose MVC-DNER to capture non-linear struc-
tures and node attributes in the recovered network. Fig. 2 shows that the em-
bedding part has network structures view T and node attributes view P , which
uses deep autoencoder to learn latent information in each view. We take the

Table 2. Layer structures of MVC-DNER on three datasets

Dataset layers in view V layers in view P

Citeseer NR-500-128 3,703-600-128

DBLP NR-800-128 9,662-900-128

BlogCatalog NR-500-128 39-4

adjacency matrix xt and the attribute matrix xp of the recovered network as
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input. In the encoding process, input features of one view could encode some
shared latent information reflecting the input of the other view. In the decoding
process, latent representations in one view could reconstruct the input of another
view. The loss function is defined as:

L(xt, xp; θ) = Lt(xt, xp; θ) + Lp(xt, xp; θ) (4)

Lt(xt, xp; θ) = β

|V ′|∑
i=1

((1− α)
∥∥xti − xt̂ti

∥∥2
2
+ α

∥∥xti − xt̂pi
∥∥2
2
)

+(1− β)

|VM |∑
i=1

((1− α)
∥∥xti − xt̂ti

∥∥2
2
+ α

∥∥xti − xt̂pi
∥∥2
2
)

(5)

Lp(xt, xp; θ) = β

|V ′|∑
i=1

((1− α)
∥∥xpi − xp̂ti

∥∥2
2
+ α ∥xpi − xp̂pi ∥

2
2)

+(1− β)

|VM |∑
i=1

((1− α)
∥∥xpi − xp̂ti

∥∥2
2
+ α ∥xpi − xp̂pi ∥

2
2)

(6)

where xt̂ti and xt̂pi are the reconstruction outputs of xti. xp̂ti and xp̂pi are the
reconstruction vectors of xpi. α and β are parameters to adjust the proportion
of self-view and cross-view reconstruction errors, recovered nodes and observed
nodes reconstruction errors, respectively. θ = {W (l), b(l), Ŵ (l), b̂(l)}Kl=1 denotes
parameters including the weights W and bias b in the deep autoencoder.

Encoding

Decoding

𝑥𝑥�̂�𝑡𝑝𝑝𝑥𝑥�̂�𝑡𝑡𝑡 𝑥𝑥�̂�𝑝𝑡𝑡 𝑥𝑥�̂�𝑝𝑝𝑝

𝑥𝑥𝑝𝑝𝑥𝑥𝑡𝑡

𝑦𝑦𝑡𝑡 𝐾𝐾 𝑦𝑦𝑝𝑝 𝐾𝐾

… …

… …… …

Fig. 2. Deep autoencoder MVC-DNER.

The loss function is minimized by stochastic gradient descent. Thus, the
learning representations preserve not only network structures information but
also node attributes information.
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5 Experiments

In this section, we evaluate our framework on three datasets through multi-label
classification and link prediction tasks. We first introduce three datasets and
baseline methods. Then we describe evaluation metrics and parameter settings
of the methods. Finally, we present the performance of DINE and compare it
against state-of-the-art baselines.

5.1 Datasets

We use three datasets including two academic datasets (Citeseer4 and DBLP5)
and a social dataset BlogCatalog6.

(1) Citeseer contains citation information of papers. In the citation network,
each node represents a paper and edges reflect citation relationship. The
citation network constructed by Citeseer contains 3,312 papers divided into
six classes including Agents, AI, DB, IR, ML, and HCI. Besides, the attribute
feature of each paper is a 3,703 dimensional binary vector based on the topics.

(2) DBLP is also a citation dataset which covers useful information on papers
such as authors, year, publisher, and title. It provides open bibliographic
information of major computer science journals and proceedings. We choose
8,192 papers from 10 research domains. We choose the title of papers as
the attribute and use a 9,662 dimensional binary vector to represent the
attribute feature.

(3) BlogCatalog is a social blog directory that manages bloggers and their
blogs. We choose some data which contains 4,096 nodes, 38,983 edges, and 39
groups. Nodes represent bloggers and edges represent the friendship between
bloggers. Besides, each blogger belongs to one or several groups based on
interesting.

5.2 Baseline Methods

We use the following methods as our baseline methods. We choose four network
representation learning methods based on matrix factorization, random walk,
and deep learning, respectively.

(1) GF [1] is a matrix factorization based method. It relies on partitioning a
graph to minimize the number of neighboring vertices. In addition, it pre-
serves first order proximity and allows for linear scalability.

(2) HOPE [18] is also based on matrix factorization. It provides an efficient way
to preserve high-order proximities of large-scale graphs. It is also capable of
capturing the asymmetric transitivity.

4 https://linqs.soe.ucsc.edu/data
5 https://www.aminer.cn/billboard/citation
6 http://socialcomputing.asu.edu/datasets/BlogCatalog
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(3) Node2vec [10] is a shallow model. It designs a flexible neighbor sampling
strategy based on Deepwalk. It can preserve both local structure and global
structure to learn network representations.

(4) SDNE [24] is the first network representation learning method based on deep
learning. The deep autoencoder captures the non-linear network structure.
It also can preserve the local and global network structure.

5.3 Parameter Settings
Our framework consists of network completion and recovered network repre-
sentation learning. In the network completion, the Kronecker parameter Θ is
random initialization. The neural network structure of MVC-DNER is listed in
Table 2. We set the learning rate as 0.001. The mini-batch size of optimization
is 50. The parameters for balancing the importance of self-view and cross-view
α , recovered nodes and observed nodes β are set to 0.5 and 0.8, respectively.

The parameter settings of these baseline methods including GF, HOPE,
Node2vec, and SDNE follow a NRL survey [9]. The learning rate of SGD is
0.0001, and max iterations are 5,000 in GF. The higher-order coefficient of HOPE
is 0.01. In Node2vec, we set the window size as 10, the walk length as 40, walks
per node as 40. The dimension of network learning representation is 128 for all
methods.

Table 3. Multi-label classification results(macro-F1) on two datasets with the portion
of missing nodes

Datasets Mr GF HOPE Node2vec SDNE DINE

Citeseer

0.05 0.253 0.265 0.431 0.366 0.642
0.10 0.231 0.253 0.423 0.365 0.636
0.15 0.202 0.257 0.412 0.358 0.627
0.20 0.203 0.244 0.419 0.352 0.629
0.25 0.235 0.249 0.403 0.346 0.617
0.30 0.225 0.243 0.388 0.335 0.614

DBLP

0.05 0.579 0.575 0.582 0.585 0.595
0.10 0.575 0.574 0.594 0.558 0.601
0.15 0.541 0.534 0.584 0.571 0.594
0.20 0.576 0.587 0.564 0.566 0.591
0.25 0.574 0.580 0.561 0.577 0.593
0.30 0.572 0.571 0.558 0.573 0.590

5.4 Experimental Results
Multi-label classification. We aim to learn representations in an incomplete
network. To achieve this goal, we need to remove 5%-30% nodes and the corre-
sponding edges. We first learn the representations based on remaining nodes and
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take the representations as the input of the classification model. Then we divide
the labeled nodes into training set and testing set. The portion ratio of training
nodes varies from 10% to 90%. We use macro-F1 to evaluate the performance
of the classification model. Besides, the experiment runs 10 times, and we take
the average of results as the final results. Table 3 lists the classification results
for each method, where Mr is the portion ratio of missing nodes.

From the table, we can observe that the performance of DINE is better
than any other baseline methods, especially in the Citeseer dataset. The perfor-
mances of these methods gradually become worse as the portion of missing nodes
increasing. Besides, two matrix factorization methods have terrible performance
in Citeseer. Most methods have a relatively better performance in the DBLP
dataset.

Link prediction. Similar to the task of multi-label classification, we also
remove partial nodes and the corresponding edges. Then we remove 20% edges
of the remainder network as links for prediction and consider them as positive
samples. Besides, we randomly select unconnected node pairs as negative sam-
ples. The number of negative samples is the same as positive samples. From the
results of link prediction presented in Fig. 3, we can see that DINE achieves sig-
nificant improvements in AUC over the baselines in all datasets. As the portion
of missing nodes increasing, the performances of these methods have a downward
trend.
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Fig. 3. Link prediction results (AUC) on three datasets with the portion of missing
nodes.

6 Conclusion

In this paper, we have presented a framework named DINE, which aims to learn
node representations in incomplete networks. The framework is divided into
two parts: network completion and recovered network representation learning.
Specifically, we recover the missing part of the incomplete network based on
the combination of EM approach and Kronecker graphs model. After recovering
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the incomplete network, we propose an algorithm named MVC-DNER to learn
node representations for the recovered network. MVC-DNER uses the deep au-
toencoder to learn representations, which preserves both network structures and
node attributes. Experimental results on three real-world network datasets show
the significant performance of our proposed method. The future work is primar-
ily on extending DINE to heterogeneous networks containing different types of
nodes and edges.
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