40 research outputs found

    Investigating magmatic processes in the early Solar System using the Cl isotopic systematics of eucrites

    Get PDF
    Generally, terrestrial rocks, martian and chondritic meteorites exhibit a relatively narrow range in bulk and apatite Cl isotope compositions, with δ37Cl (per mil deviation from standard mean ocean chloride) values between − 5.6 and + 3.8 ‰. Lunar rocks, however, have more variable bulk and apatite δ37Cl values, ranging from ∼ − 4 to + 40 ‰. As the Howardite-Eucrite-Diogenite (HED) meteorites represent the largest suite of crustal and sub-crustal rocks available from a differentiated basaltic asteroid (4 Vesta), studying them for their volatiles may provide insights into planetary differentiation processes during the earliest Solar System history. Here the abundance and isotopic composition of Cl in apatite were determined for seven eucrites representing a broad range of textural and petrological characteristics. Apatite Cl abundances range from ∼ 25 to 4900 ppm and the δ37Cl values range from − 3.98 to + 39.2 ‰. Samples with lower apatite H2O contents were typically also enriched in 37Cl but no systematic correlation between δ37Cl and δD values was observed across samples. Modelled Rayleigh fractionation and a strong positive correlation between bulk δ66Zn and apatite δ37Cl support the hypothesis that Cl degassed as metal chlorides from eucritic magmas, in a hydrogen-poor environment. In the case of lunar samples, it has been noted that δ37Cl values of apatite positively correlate with bulk La/Yb ratio. Interestingly, most eucrites show a negative correlation with bulk La/Yb ratio. Recently, isotopically light Cl values have been suggested to record the primary solar nebular signature. If this is the case then 4 Vesta, which accreted rapidly and early in Solar System history, could also record this primary nebular signature corresponding to the lightest Cl values measured here. The significant variation in Cl isotope composition observed within the eucrites are likely related to degassing of metal chlorides

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Writing revision in kinesiology

    No full text
    The purpose was to study the effectiveness of the writing-revision process in undergraduate students. There was no difference between genders. However, females completed more revisions

    Effect of drawing on the molecular orientation, polymorphism, and properties of melt-spun nanocomposite fibers based on nylon 6 with polyhedral oligomeric silsesquioxane, montmorillonite, and their combination

    Full text link
    In this work, binary and ternary nanocomposite systems based on nylon 6 with montmorillonite (MMT), polyhedral oligomeric silsesquioxane (POSS), and their combination were prepared using a melt-compounding process. In the transmission electron microscope (TEM) images, the MMT was found to be generally well dispersed in all materials resulting in its good chemical compatibility with nylon 6, affording intercalated disordered microstructures. On the other hand, the TEM images showed that POSS formed micron-size crystalline agglomerates possibly resulting from a lack in chemical compatibility with nylon 6. These nanocomposite systems were melt-spun into fibers, and the relevant structure-property relationships that occur during the cold drawing process was established by correlating the tensile properties to the changes in crystallinity, polymorphic crystal forms, and molecular orientation. The properties of the resulting fibers were found to be rather skewed and significantly affected by the polymer/nanoparticles interface. The agglomeration of POSS and POSS-MMT particles coupled with the weak nylon 6/POSS interface, reflected on the tensile properties of the nylon 6/POSS and nylon 6/MMT-POSS fibers which underperformed. Some nanocomposite fiber systems offered significant improvements in modulus without excessively compromising the extensibility of the fibers
    corecore