7 research outputs found

    Perspectives on Allyship in Academia

    Get PDF
    Allyship in academia is critical for creating inclusive communities that are welcoming to all students, but the perception of its benefits and challenges can vary depending on a number of factors. This session will explore perspectives of allyship in academia by bringing together a diverse group of faculty and students who can share a wide range of experiences and insights, and aims to facilitate a discussion among all attendees that leads to an exchange of ideas, the strengthening of our community, and progress toward our common goal of inclusion in computing

    Perspectives on Allyship in Academia

    Get PDF
    Allyship in academia is critical for creating inclusive communities that are welcoming to all students, but the perception of its benefits and challenges can vary depending on a number of factors. This session will explore perspectives of allyship in academia by bringing together a diverse group of faculty and students who can share a wide range of experiences and insights, and aims to facilitate a discussion among all attendees that leads to an exchange of ideas, the strengthening of our community, and progress toward our common goal of inclusion in computing

    Trawl fishing impacts on the status of seabed fauna in diverse regions of the globe

    Get PDF
    Bottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large-scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos-group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management

    Personalizing Speech Recognition Based on User-entered Text

    Get PDF
    This disclosure describes techniques that, with user permission, use text data entered by a user to improve automatic speech recognition. A pre-trained language model and a personalization plan are applied to text entered by the user to build a personalized language model. Using user-entered data for personalization advantageously personalizes the dictation experience even for users who seldom use dictation. Using shallow fusion, a personalized language model trained on user-permitted data is combined with an automatic speech recognition (ASR) model. The combination can provide recognition performance superior to that of the component models. Fusion with language models trained through federated learning, as described herein, can improve dictation quality without requiring access to large amounts of transcribed dictation data

    Trade-offs and synergies in the structural and functional characteristics of leaves photosynthesizing in aquatic environments

    No full text
    Aquatic plants, comprising different divisions of embryophytes, derive from terrestrial ancestors. They have evolved to live in water, both fresh and salty, an environment that presents unique challenges and opportunities for photosynthesis and growth. These include, compared to air, a low water stress, a greater density, and attenuation of light, and a more variable supply of inorganic carbon, both in concentration and chemical species, but overall a lower carbon availability, and the opportunity to take up nutrients from the water. The leaves of many aquatic plants are linear, dissected, whorled, or cylindrical with a large volume of air spaces. They tend to have a high specific leaf area, thin cuticles, and usually lack functional stomata. Exploiting the availability of chemicals in their environment, freshwater macrophytes may incorporate silica in their cell wall, while seagrasses contain sulphated polysaccharides, similar to those of marine macroalgae; both groups have low lignin content. This altered cell wall composition produces plants that are more flexible and therefore more resistant to hydraulic forces (mechanical stress arising from water movement). Aquatic plants may have enhanced light harvesting complexes conferring shade adaptation, but also have mechanisms to cope with high light. Aquatic plants have evolved numerous strategies to overcome potential carbon-limitation in water. These include growing in micro-environments where CO2 is high, producing leaves and roots that exploit CO2 from the air or sediment and operating concentrating mechanisms that increase CO2 (CCM) around the primary carboxylating enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase. These comprise C4 metabolism, crassulacean acid metabolism, and the ability to exploit the often high concentrations of HCO3−, and ~50% of freshwater macrophytes and ~85% of seagrasses have one or more CCM. Many of these adaptations involve trade-offs between conflictin constraints and opportunities while others represent ‘synergies’ that help to maximize the productivity of this important group of plants
    corecore