35 research outputs found

    Surface and electronic structure of MOCVD-grown Ga(0.92)In(0.08)N investigated by UV and X-ray photoelectron spectroscopies

    Full text link
    The surface and electronic structure of MOCVD-grown layers of Ga(0.92)In(0.08)N have been investigated by means of photoemission. An additional feature at the valence band edge, which can be ascribed to the presence of In in the layer, has been revealed. A clean (0001)-(1x1) surface was prepared by argon ion sputtering and annealing. Stability of chemical composition of the investigated surface subjected to similar ion etching was proven by means of X-ray photoemission spectroscopy.Comment: 13 pages, 6 figure

    Integrated motor drives: state of the art and future trends

    Get PDF
    With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system. This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Get PDF
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    A framework for evaluating animals as sentinels for infectious disease surveillance

    Get PDF
    The dynamics of infectious diseases are highly variable. Host ranges, host responses to pathogens and the relationships between hosts are heterogeneous. Here, we argue that the use of animal sentinels has the potential to use this variation and enable the exploitation of a wide range of pathogen hosts for surveillance purposes. Animal sentinels may be used to address many surveillance questions, but they may currently be underused as a surveillance tool and there is a need for improved interdisciplinary collaboration and communication in order to fully explore the potential of animal sentinels. In different contexts, different animal hosts will themselves vary in their capacity to provide useful information. We describe a conceptual framework within which the characteristics of different host populations and their potential value as sentinels can be evaluated in a broad range of settings
    corecore