74 research outputs found

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Characterising and Predicting Benthic Biodiversity for Conservation Planning in Deepwater Environments

    Get PDF
    Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met

    Azimuthal anisotropy and correlations at large transverse momenta in p+pp+p and Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV

    Get PDF
    Results on high transverse momentum charged particle emission with respect to the reaction plane are presented for Au+Au collisions at sNN\sqrt{s_{_{NN}}}= 200 GeV. Two- and four-particle correlations results are presented as well as a comparison of azimuthal correlations in Au+Au collisions to those in p+pp+p at the same energy. Elliptic anisotropy, v2v_2, is found to reach its maximum at pt3p_t \sim 3 GeV/c, then decrease slowly and remain significant up to pt7p_t\approx 7 -- 10 GeV/c. Stronger suppression is found in the back-to-back high-ptp_t particle correlations for particles emitted out-of-plane compared to those emitted in-plane. The centrality dependence of v2v_2 at intermediate ptp_t is compared to simple models based on jet quenching.Comment: 4 figures. Published version as PRL 93, 252301 (2004

    Differential Extinction and the Contrasting Structure of Polar Marine Faunas

    Get PDF
    Background: The low taxonomic diversity of polar marine faunas today reflects both the failure of clades to colonize or diversify in high latitudes and regional extinctions of once-present clades. However, simple models of polar evolution are made difficult by the strikingly different faunal compositions and community structures of the two poles. Methodology/Principal Findings: A comparison of early Cenozoic Arctic and Antarctic bivalve faunas with modern ones, within the framework of a molecular phylogeny, shows that while Arctic losses were randomly distributed across the tree, Antarctic losses were significantly concentrated in more derived families, resulting in communities dominated by basal lineages. Potential mechanisms for the phylogenetic structure to Antarctic extinctions include continental isolation, changes in primary productivity leading to turnover of both predators and prey, and the effect of glaciation on shelf habitats. Conclusions/Significance: These results show that phylogenetic consequences of past extinctions can vary substantially among regions and thus shape regional faunal structures, even when due to similar drivers, here global cooling, and provide the first phylogenetic support for the ‘‘retrograde’ ’ hypothesis of Antarctic faunal evolution

    Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV

    Get PDF
    The results from the STAR Collaboration on directed flow (v_1), elliptic flow (v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a Blast Wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v_2, scaling with the number of constituent quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures modified, but data the same. However, in Fig. 35 the hydro calculations are corrected in this version. The data tables are available at http://www.star.bnl.gov/central/publications/ by searching for "flow" and then this pape

    Climate Change and Trophic Response of the Antarctic Bottom Fauna

    Get PDF
    BACKGROUND: As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. METHODOLOGY/PRINCIPAL FINDINGS: We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop approximately 41 Ma (million years ago), eliminated durophagous predators-teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)-from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, approximately 33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. CONCLUSIONS/SIGNIFICANCE: Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes

    Whole-Community Facilitation Regulates Biodiversity on Patagonian Rocky Shores

    Get PDF
    Understanding the factors that generate and maintain biodiversity is a central goal in ecology. While positive species interactions (i.e., facilitation) have historically been underemphasized in ecological research, they are increasingly recognized as playing important roles in the evolution and maintenance of biodiversity. Dominant habitat-forming species (foundation species) buffer environmental conditions and can therefore facilitate myriad associated species. Theory predicts that facilitation will be the dominant community-structuring force under harsh environmental conditions, where organisms depend on shelter for survival and predation is diminished. Wind-swept, arid Patagonian rocky shores are one of the most desiccating intertidal rocky shores ever studied, providing an opportunity to test this theory and elucidate the context-dependency of facilitation.Surveys across 2100 km of southern Argentinean coastline and experimental manipulations both supported theoretical predictions, with 43 out of 46 species in the animal assemblage obligated to living within the matrices of mussels for protection from potentially lethal desiccation stress and predators having no detectable impact on diversity.These results provide the first experimental support of long-standing theoretical predictions and reveal that in extreme climates, maintenance of whole-community diversity can be maintained by positive interactions that ameliorate physical stress. These findings have important conservation implications and emphasize that preserving foundation species should be a priority in remediating the biodiversity consequences of global climate change

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    Biophysical Factors Affecting the Distribution of Demersal Fish around the Head of a Submarine Canyon Off the Bonney Coast, South Australia

    Get PDF
    We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth)

    Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient

    Get PDF
    In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high-throughput assays. On the one hand, recent progress in microfluidics technologies is expected to strongly support the development of miniaturized analytical devices, which will speed up (bio)analytical assays. On the other hand, a higher throughput can be obtained by the simultaneous screening of one sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing at the macro level is now common in research labs and is expected to become part of clinical diagnostics. This review aims to debate on the “added value” we can expect from (bio)analysis with particles in microfluidic devices. Technologies to (a) decode, (b) analyze, and (c) manipulate the particles are described. Special emphasis is placed on the challenges of integrating currently existing detection platforms for encoded microparticles into microdevices and on promising microtechnologies that could be used to down-scale the detection units in order to obtain compact miniaturized particle-based multiplexing platforms
    corecore