54 research outputs found

    Increased Energy Differentially Increases Richness and Abundance of Optimal Body Sizes in Deep-Sea Wood-Falls

    Get PDF
    Theoretical and empirical studies suggest that the total energy available in natural communities influences body size as well as patterns of abundance and diversity. But the precise mechanisms underlying relationships or how these three ecological properties relate remain elusive. We identify five hypotheses relating energy availability, body size distributions, abundance, and species richness within communities, and we use experimental deep sea wood fall communities to test their predicted effects both on descriptors describing the species richness-body size distribution, and on trends in species richness within size classes over an energy gradient (size class-richness relationships). Invertebrate communities were taxonomically identified, weighed, and counted from 32 Acacia sp. logs ranging in size from 0.6 to 20.6 kg (corresponding to different levels of energy available) which were deployed at 3203 m in the Northeast Pacific Ocean for between 5 and 7 years. Trends in both the species richness-body size distribution and the size class-richness distribution with increasing wood fall size provide support for the Increased Packing hypothesis: species richness increases with increasing wood fall size but only in the modal size class. Furthermore, species richness of body size classes reflected the abundance of individuals in that size class. Thus, increases in richness in the modal size class with increasing energy were concordant with increases in abundance within that size class. The results suggest that increases in species richness occurring as energy availability increases may be isolated to specific niches, e.g. the body size classes, especially in communities developing on discrete and energetically isolated resources such as deep sea wood falls

    Metabolic niches and biodiversity : a test case in the deep sea benthos

    Get PDF
    The great anthropogenic alterations occurring to carbon availability in the oceans necessitate an understanding of the energy requirements of species and how changes in energy availability may impact biodiversity. The deep-sea floor is characterized naturally by extremely low availability of chemical energy and is particularly vulnerable to changes in carbon flux from surface waters. Because the energetic requirements of organisms impact nearly every aspect of their ecology and evolution, we hypothesize that species are adapted to specific levels of carbon availability and occupy a particular metabolic niche. We test this hypothesis in deep-sea, benthic invertebrates specifically examining how energetic demand, axes of the metabolic niche, and geographic range size vary over gradients of chemical energy availability. We find that benthic invertebrates with higher energetic expenditures, and ecologies associated with high energy demand, are located in areas with higher chemical energy availability. In addition, we find that range size and location of deep-sea, benthic species is determined by geographic patterns in chemical energy availability. Our findings indicate that species may be adapted to specific energy regimes, and the metabolic niche can potentially link scales from individuals to ecosystems as well as adaptation to patterns in biogeography and biodiversity

    Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia

    Get PDF
    Chlorophyll a concentration (Chl) product validation off theWestern Iberian coast is here undertaken by directly comparing remote sensing data with in situ surface reference values. Both standard and recently developed alternative algorithms are considered for match-up data analysis. The investigated standard products are those produced by the MERIS (algal 1 and algal 2) and MODIS (OC3M) algorithms. The alternative data products include those generatedwithin the CoastColour Project and Ocean Color Climate Change Initiative (OC-CCI) funded by ESA, as well as a neural net model trained with field measurements collected in the Atlantic off Portugal (MLPATLP). Statistical analyses showed that satellite Chl estimates tend to be larger than in situ reference values. The study also revealed that a non-uniform Chl distribution in the water column can be a concurring factor to the documented overestimation tendency when considering larger optical depth match-up stations. Among standard remote sensing products, MODIS OC3M and MERIS algal 2 yield the best agreement with in situ data. The performance of MLPATLP highlights the capability of regional solutions to further improve Chl retrieval by accounting for environmental specificities. Results also demonstrate the relevance of oceanographic regions such as the Nazaré area to evaluate how complex hydrodynamic conditions can influence the quality of Chl products.This studywas performed in the framework of HabSpot FCT Project, PTDC/MAR/100348/2008 and European Space Agency projects DUE CoastColour (ESRIN/AO/1-6141/09/l-EC) and Climate Change Iniciative — Ocean Color (AO-1/6207/09/I-LG). The work has been also partially supported by the European Space Agency within the framework of the MERIS Validation Activities under contract n. 12595/09/I-OL, and sampling activities benefited from European projects HERMES (GOCE-CT-2005-511234) and Hermione (EC contract 226354) support. We would like to thank NASA OBPG for the MODIS data and ESA Project AOPT-2423 for providing MERIS full resolution images. Ana C. Brito was funded by a Portuguese Post-doc grant from FCT (BPD/63017/2009) and by the Investigador FCT Program (IF/00331/2013). Davide D'Alimonte was funded by Investigador FCT Program (IF/00541/2013).info:eu-repo/semantics/publishedVersio

    Navigating uncertainty in maximum body size in marine metazoans

    No full text
    Body size is a fundamental biological trait shaping ecological interactions, evolutionary processes, and our understanding of the structure and dynamics of marine communities on a global scale. Accurately defining a species' body size, despite the ease of measurement, poses significant challenges due to varied methodologies, tool usage, and subjectivity among researchers, resulting in multiple, often discrepant size estimates. These discrepancies, stemming from diverse measurement approaches and inherent variability, could substantially impact the reliability and precision of ecological and evolutionary studies reliant on body size data across extensive species datasets. This study examines the variation in reported maximum body sizes across 69,570 individual measurements of maximum size, ranging from 45 m, for 27,271 species of marine metazoans. The research aims to investigate how reported maximum size variations within species relate to organism size, taxonomy, habitat, and the presence of skeletal structures. The investigation particularly focuses on understanding why discrepancies in maximum size estimates arise and their potential implications for broader ecological and evolutionary studies relying on body size data. Variation in reported maximum sizes is zero for 38% of species, and low for most species, although it exceeds two orders of magnitude for some species. The likelihood of zero variation in maximum size decreased with more measurements and increased in larger species, though this varied across phyla and habitats. Pelagic organisms consistently had low maximum size range values, while small species with unspecified habitats had the highest variation. Variations in maximum size within a species were notably smaller than interspecific variation at higher taxonomic levels. Significant variation in maximum size estimates exists within marine species, and partially explained by organism size, taxonomic group, and habitat. Variation in maximum size could be reduced by standardized measurement protocols and improved meta-data. Despite the variation, egregious errors in published maximum size measurements are rare, and their impact on comparative macroecological and macroevolutionary research is likely minimal

    Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997-1998

    No full text
    High-quality ocean color data (chlorophyll) provided by the Sea-viewing Wide Field of view Sensor (SeaWiFS) satellite were analyzed for the first complete year of coverage (October 1997 to September 1998) in the tropical Indo-Pacific basin. This period coincides with the peak of one of the strongest El Nino events during December 1997 and the La Nina of 1998 that appeared dramatically in less than a month as a sea surface temperature (SST) change of over 6°C in the central equatorial Pacific during June 1998. The tropical Indian Ocean also underwent a highly anomalous series of events with negative SST anomalies (SSTA) of over 3°C in the eastern equatorial and coastal regions during October-December 1997 and warm SSTA in the west that peaked at over 2°C during February 1998. The ocean color variability is interpreted using other satellite data such as sea level from TOPEX/Poseidon and also in terms of the dynamics and thermodynamics of the region from simulations with an ocean general circulation model. The El Nino-related reductions in equatorial production and the off-equatorial increase in biological activity, and their basin scale evolution is clearly seen for the first time. Persistent northerly wind anomalies resulted in a northward shift of the equatorial divergence and the upwelling Kelvin wave which signalled the end of the 1997-1998 El Nino. The anomalous surface chlorophyll associated with this Kelvin wave was also clearly shifted north of the equator by nearly 300 km and appeared more than a month before the negative sea level anomalies seen by TOPEX/Poseidon. On the equator near 165°E, the disappearance of the barrier layer appeared to coincide with a localized bloom that occurred in response to the easterly wind bursts over the western Pacific that lasted from December 1997 through the boreal summer... (D'après résumé d'auteur

    Biological and physical signatures in the tropical and subtropical Atlantic

    No full text
    The variability of sea surface chlorophyll concentration in the tropical and subtropical Atlantic during the first year of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery is examined. An Ocean General Circulation Model (OGCM) is used, along with TOPEX/Poseidon dynamic height observations and global gridded wind stress data sets, to explain the physical forcing of surface ocean color signals. Regions of high surface chlorophyll are strongly correlated with mesoscale and large-scale physical processes such as the strong upwelling off the west coast of Africa, the relatively high oceanic production within the Guinea Dome region, and the generation and propagation of large anticyclonic eddies along the coast of south America, north of the equator. The major river outflows (Amazon, Orinoco, and Congo) have strong signatures with plumes of apparently high Chl alpha in excess of 10 mg/3 near their deltas. The fall bloom in the eastern tropical Atlantic observed by the Coastal Zone Color Scanner (CZCS) was absent in 1997, whereas a bloom was observed in this region in July-September 1998, which was not observed by the CZCS. We attribute these apparent anomalies to the projection of the 1997-1998 El Nino event into the tropical Atlantic basin ; these signals are correlated with sea surface temperature anomalies known to be associated with ENSO. The SeaWiFS images show that there are seasonal blooms within the hydrographic provinces of the Guinea and Angola domes. These hydrographic provinces are characterized by the dynamic uplift of the thermocline at the North Equatorial Current southern boundary (Guinea Dome) and the Benguela Current eastern boundary (Angola Dome). Within these domes, the Ekman pumping and transport are significant due to the strong trade winds at the surface... (D'après résumé d'auteur

    Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997-1998

    No full text
    High-quality ocean color data (chlorophyll) provided by the Sea-viewing Wide Field of view Sensor (SeaWiFS) satellite were analyzed for the first complete year of coverage (October 1997 to September 1998) in the tropical Indo-Pacific basin. This period coincides with the peak of one of the strongest El Nino events during December 1997 and the La Nina of 1998 that appeared dramatically in less than a month as a sea surface temperature (SST) change of over 6°C in the central equatorial Pacific during June 1998. The tropical Indian Ocean also underwent a highly anomalous series of events with negative SST anomalies (SSTA) of over 3°C in the eastern equatorial and coastal regions during October-December 1997 and warm SSTA in the west that peaked at over 2°C during February 1998. The ocean color variability is interpreted using other satellite data such as sea level from TOPEX/Poseidon and also in terms of the dynamics and thermodynamics of the region from simulations with an ocean general circulation model. The El Nino-related reductions in equatorial production and the off-equatorial increase in biological activity, and their basin scale evolution is clearly seen for the first time. Persistent northerly wind anomalies resulted in a northward shift of the equatorial divergence and the upwelling Kelvin wave which signalled the end of the 1997-1998 El Nino. The anomalous surface chlorophyll associated with this Kelvin wave was also clearly shifted north of the equator by nearly 300 km and appeared more than a month before the negative sea level anomalies seen by TOPEX/Poseidon. On the equator near 165°E, the disappearance of the barrier layer appeared to coincide with a localized bloom that occurred in response to the easterly wind bursts over the western Pacific that lasted from December 1997 through the boreal summer... (D'après résumé d'auteur

    Biological and physical signatures in the tropical and subtropical Atlantic

    No full text
    The variability of sea surface chlorophyll concentration in the tropical and subtropical Atlantic during the first year of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery is examined. An Ocean General Circulation Model (OGCM) is used, along with TOPEX/Poseidon dynamic height observations and global gridded wind stress data sets, to explain the physical forcing of surface ocean color signals. Regions of high surface chlorophyll are strongly correlated with mesoscale and large-scale physical processes such as the strong upwelling off the west coast of Africa, the relatively high oceanic production within the Guinea Dome region, and the generation and propagation of large anticyclonic eddies along the coast of south America, north of the equator. The major river outflows (Amazon, Orinoco, and Congo) have strong signatures with plumes of apparently high Chl alpha in excess of 10 mg/3 near their deltas. The fall bloom in the eastern tropical Atlantic observed by the Coastal Zone Color Scanner (CZCS) was absent in 1997, whereas a bloom was observed in this region in July-September 1998, which was not observed by the CZCS. We attribute these apparent anomalies to the projection of the 1997-1998 El Nino event into the tropical Atlantic basin ; these signals are correlated with sea surface temperature anomalies known to be associated with ENSO. The SeaWiFS images show that there are seasonal blooms within the hydrographic provinces of the Guinea and Angola domes. These hydrographic provinces are characterized by the dynamic uplift of the thermocline at the North Equatorial Current southern boundary (Guinea Dome) and the Benguela Current eastern boundary (Angola Dome). Within these domes, the Ekman pumping and transport are significant due to the strong trade winds at the surface... (D'après résumé d'auteur

    The role of phytoplankton dynamics in the seasonal and interannual variability of carbon in the subpolar North Atlantic – a modeling study

    Get PDF
    We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients) are significantly improved when compared to surface bservations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and “other phytoplankton” (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 ?mol kg?1 with a corresponding increase in DIC of up to 16 ?mol kg?1. During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 ?atm and a reduction of atmospheric CO2 uptake of more than 6 mmolm?2 d?1. On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27%. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500 tonnes C yr?1
    corecore