29 research outputs found

    Ices in Star-Forming Regions: First Results from VLT-ISAAC

    Get PDF
    The first results from a VLT-ISAAC program on L- and M-band infrared spectroscopy of deeply-embedded young stellar objects are presented. The advent of 8-m class telescopes allows high S/N spectra of low-luminosity sources to be obtained. In our first observing run, low- and medium-resolution spectra have been measured toward a dozen objects, mostly in the Vela and Chamaeleon molecular clouds. The spectra show strong absorption of H2O and CO ice, as well as weak features at `3.47' and 4.62 mu. No significant solid CH3OH feature at 3.54 mu is found, indicating that the CH3OH/H2O ice abundance is lower than toward some massive protostars. Various evolutionary diagnostics are investigated for a set of sources in Vela.Comment: 8 pages, 4 figures, to appear in The Origins of Stars and Planets: the VLT View, eds. J. Alves, M. McCaughrean (Springer Verlag

    (Sub)mm Interferometry Applications in Star Formation Research

    Full text link
    This contribution gives an overview about various applications of (sub)mm interferometry in star formation research. The topics covered are molecular outflows, accretion disks, fragmentation and chemical properties of low- and high-mass star-forming regions. A short outlook on the capabilities of ALMA is given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets from Young Star: High Angular Resolution Observations". A high-resolution version of the paper can be found at http://www.mpia.de/homes/beuther/papers.htm

    Formation of stars and planets: the role of magnetic fields

    Full text link
    Star formation is thought to be triggered by gravitational collapse of the dense cores of molecular clouds. Angular momentum conservation during the collapse results in the progressive increase of the centrifugal force, which eventually halts the inflow of material and leads to the development of a central mass surrounded by a disc. In the presence of an angular momentum transport mechanism, mass accretion onto the central object proceeds through this disc, and it is believed that this is how stars typically gain most of their mass. However, the mechanisms responsible for this transport of angular momentum are not well understood. Although the gravitational field of a companion star or even gravitational instabilities (particularly in massive discs) may play a role, the most general mechanisms are turbulence viscosity driven by the magnetorotational instability (MRI), and outflows accelerated centrifugally from the surfaces of the disc. Both processes are powered by the action of magnetic fields and are, in turn, likely to strongly affect the structure, dynamics, evolutionary path and planet-forming capabilities of their host discs. The weak ionisation of protostellar discs, however, may prevent the magnetic field from effectively coupling to the gas and shear and driving these processes. Here I examine the viability and properties of these magnetically-driven processes in protostellar discs. The results indicate that, despite the weak ionisation, the magnetic field is able to couple to the gas and shear for fluid conditions thought to be satisfied over a wide range of radii in these discs.Comment: Invited Review. 11 figures and 1 table. Accepted for publication in Astrophysics & Space Scienc

    The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS): I. Survey overview

    Get PDF
    Context: The Orion molecular cloud complex harbours the nearest Giant Molecular Clouds (GMCs) and the nearest site of high-mass star formation. Its young star and protostar populations are thoroughly characterized. The region is therefore a prime target for the study of star formation. Aims: Here, we verify the performance of the SuperCAM 64 pixel heterodyne array on the Atacama Pathfinder Experiment (APEX). We give a descriptive overview of a set of wide-field CO(3-2) spectral line cubes obtained towards the Orion GMC complex, aimed at characterizing the dynamics and structure of the extended molecular gas in diverse regions of the clouds, ranging from very active sites of clustered star formation in Orion B to comparatively quiet regions in southern Orion A. In a future publication, we will characterize the full population of protostellar outflows and their feedback over an entire GMC. Methods: We present a 2.7 square degree (130 pc2) mapping survey in the 12CO(3-2) transition, obtained using SuperCAM on APEX at an angular resolution of 1900 (7600 AU or 0.037 pc at a distance of 400 pc), covering the main sites of star formation in the Orion B cloud (L 1622, NGC 2071, NGC 2068, Ori B9, NGC 2024, and NGC 2023), and a large patch in the southern part of the L 1641 cloud in Orion A. Results: We describe CO integrated line emission and line moment maps and position-velocity diagrams for all survey fields and discuss a few subregions in some detail. Evidence for expanding bubbles is seen with lines splitting into double components, often in areas of optical nebulosities, most prominently in the NGC 2024 H ii region, where we argue that the bulk of the molecular gas is in the foreground of the H ii region. High CO(3-2)/CO(1-0) line ratios reveal warm CO along the western edge of the Orion B cloud in the NGC 2023/NGC 2024 region facing the IC 434 H ii region. We see multiple, well separated radial velocity cloud components towards several fields and propose that L 1641-S consists of a sequence of clouds at increasingly larger distances. We find a small, seemingly spherical cloud, which we term ’Cow Nebula’ globule, north of NGC 2071. We confirm that we can trace high velocity line wings out to the ’extremely high velocity’ regime in protostellar molecular outflows for the NGC 2071-IR outflow and the NGC 2024 CO jet, and identify the protostellar dust core FIR4 (rather than FIR5) as the true driving source of the NGC 2024 monopolar outflow

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    Conference Summary

    No full text
    I present a personal summary of the first ARENA conference on the prospects of building large astronomical infrastructures at the Concordia station in Antarctica, and my view on our progress to date in achieving this goal. In particular, I discuss the basic scientific, technical, and political conditions which I believe must be satisfied in order to develop a world-class international astronomical facility at Concordia.
    corecore