993 research outputs found

    Major shifts in nutrient and phytoplankton dynamics in the North Pacific Subtropical Gyre over the last 5000 years revealed by high-resolution proteinaceous deep-sea coral δ\u3csup\u3e15\u3c/sup\u3eN and δ\u3csup\u3e13\u3c/sup\u3eC records

    Get PDF
    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on Earth and is a critical component of global oceanic biogeochemical cycling and carbon sequestration. We report here multi-millennial-scale, sub-decadal-resolution records of bulk stable nitrogen (δ15N) and carbon (δ13C) isotope records from proteinaceous deep-sea corals. Data from three Kulamanamana haumeaae specimens from the main Hawaiian Islands extend the coral-based time-series back ∼5000 yrs for the NPSG and bypass constraints of low resolution sediment cores in this oligotrophic ocean region. We interpret these records in terms of shifting biogeochemical cycles and plankton community structure, with a main goal of placing the extraordinarily rapid ecosystem biogeochemical changes documented by recent coral records during the Anthropocene in a context of broader Late-Holocene variability. During intervals where new data overlaps with previous records, there is strong correspondence in isotope values, indicating that this older data represents a direct extension of Anthropocene records. These results reveal multiple large isotopic shifts in both δ15N and δ13C values similar to or larger in magnitude to those reported in the last 150 yrs. This shows that large fluctuations in the isotopic composition of export production in this region are not unique to the recent past, but have occurred multiple times through the Mid- to Late-Holocene. However, these earlier isotopic shifts occurred over much longer time intervals (∼millennial vs. decadal timescales). Further, the δ15N data confirm that the extremely low present day δ15N values recorded by deep sea corals (∼8‰) are unprecedented for the NPSG, at least within the past five millennia. Together these records reveal centennial to millennial-scale oscillations in NPSG biogeochemical cycles. Further, these data also suggest a number of independent biogeochemical regimes during which δ15N and δ13C trends were synchronous (similar to recent coral records) or distinctly decoupled. We propose that phytoplankton species composition and nutrient source changes are the dominant mechanisms controlling the coupling and de-coupling of δ15N and δ13C values, likely primarily influenced by changing oceanographic conditions (e.g., stratification vs. entrainment). The decoupling observed in the past further suggests that oceanographic forcing and ecosystem responses controlling δ15N and δ13C values of export production have been substantially different earlier in the Holocene compared to mechanisms controlling the present day system

    Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua)

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ecology and Evolution 5 (2015): 1278–1290, doi:10.1002/ece3.1437.Compound-specific stable isotope analysis (CSIA) of amino acids (AA) has rapidly become a powerful tool in studies of food web architecture, resource use, and biogeochemical cycling. However, applications to avian ecology have been limited because no controlled studies have examined the patterns in AA isotope fractionation in birds. We conducted a controlled CSIA feeding experiment on an avian species, the gentoo penguin (Pygoscelis papua), to examine patterns in individual AA carbon and nitrogen stable isotope fractionation between diet (D) and consumer (C) (Δ13CC-D and Δ15NC-D, respectively). We found that essential AA δ13C values and source AA δ15N values in feathers showed minimal trophic fractionation between diet and consumer, providing independent but complimentary archival proxies for primary producers and nitrogen sources respectively, at the base of food webs supporting penguins. Variations in nonessential AA Δ13CC-D values reflected differences in macromolecule sources used for biosynthesis (e.g., protein vs. lipids) and provided a metric to assess resource utilization. The avian-specific nitrogen trophic discrimination factor (TDFGlu-Phe = 3.5 ± 0.4‰) that we calculated from the difference in trophic fractionation (Δ15NC-D) of glutamic acid and phenylalanine was significantly lower than the conventional literature value of 7.6‰. Trophic positions of five species of wild penguins calculated using a multi-TDFGlu-Phe equation with the avian-specific TDFGlu-Phe value from our experiment provided estimates that were more ecologically realistic than estimates using a single TDFGlu-Phe of 7.6‰ from the previous literature. Our results provide a quantitative, mechanistic framework for the use of CSIA in nonlethal, archival feathers to study the movement and foraging ecology of avian consumers.This research was funded by National Science Foundation Office of Polar Programs [grants ANT-0125098, ANT-0739575] and the 2013 Antarctic Science Bursaries

    Calibrating amino acid δ\u3csup\u3e13\u3c/sup\u3eC and δ\u3csup\u3e15\u3c/sup\u3eN offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives.

    Get PDF
    Compound-specific stable isotopes of amino acids (CSI-AA) from proteinaceous deep-sea coral skeletons have the potential to improve paleoreconstructions of plankton community composition, and our understanding of the trophic dynamics and biogeochemical cycling of sinking organic matter in the Ocean. However, the assumption that the molecular isotopic values preserved in protein skeletal material reflect those of the living coral polyps has never been directly investigated in proteinaceous deep-sea corals. We examined CSI-AA from three genera of proteinaceous deep-sea corals from three oceanographically distinct regions of the North Pacific: Primnoa from the Gulf of Alaska, Isidella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre. We found minimal offsets in the δ13C values of both essential and non-essential AAs, and in the δ15N values of source AAs, between paired samples of polyp tissue and protein skeleton. Using an essential AA δ13C fingerprinting approach, we show that estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to the sinking organic matter supporting deep-sea corals are the same when calculated from polyp tissue or recently deposited skeletal tissue. The δ15N values of trophic AAs in skeletal tissue, on the other hand, were consistently 3–4‰ lower than polyp tissue for all three genera. We hypothesize that this offset reflects a partitioning of nitrogen flux through isotopic branch points in the synthesis of polyp (fast turnover tissue) and skeleton (slow, unidirectional incorporation). This offset indicates an underestimation, albeit correctable, of approximately half a trophic position from gorgonin protein-based deep-sea coral skeleton. Together, our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context

    Hubble Space Telescope Grism Spectroscopy of Extreme Starbursts Across Cosmic Time: The Role of Dwarf Galaxies in the Star Formation History of the Universe

    Get PDF
    Near infrared slitless spectroscopy with the Wide Field Camera 3, onboard the Hubble Space Telescope, offers a unique opportunity to study low-mass galaxy populations at high-redshift (zz\sim1-2). While most highz-z surveys are biased towards massive galaxies, we are able to select sources via their emission lines that have very-faint continua. We investigate the star formation rate (SFR)-stellar mass (MM_{\star}) relation for about 1000 emission-line galaxies identified over a wide redshift range of 0.3z2.30.3 \lesssim z \lesssim 2.3. We use the Hα_{\alpha} emission as an accurate SFR indicator and correct the broadband photometry for the strong nebular contribution to derive accurate stellar masses down to M107MM_{\star} \sim 10^{7} M_{\odot}. We focus here on a subsample of galaxies that show extremely strong emission lines (EELGs) with rest-frame equivalent widths ranging from 200 to 1500 \AA. This population consists of outliers to the normal SFR-MM_{\star} sequence with much higher specific SFRs (>10> 10 Gyr1^{-1}). While on-sequence galaxies follow a continuous star formation process, EELGs are thought to be caught during an extreme burst of star formation that can double their stellar mass in less than 100100 Myr. The contribution of starbursts to the total star formation density appears to be larger than what has been reported for more massive galaxies in previous studies. In the complete mass range 8.2<8.2 < log(M/MM_{\star}/M_{\odot}) <10< 10 and a SFR lower completeness limit of about 2 MM_{\odot} yr1^{-1} (10 MM_{\odot} yr1^{-1}) at z1z\sim1 (z2z \sim 2), we find that starbursts having EWrest_{rest}(Hα_{\alpha})>> 300, 200, and 100 A contribute up to 13\sim13, 18, and 34 %, respectively, to the total SFR of emission-line selected sample at z12z\sim1-2. The comparison with samples of massive galaxies shows an increase in the contribution of starbursts towards lower masses.Comment: 11 pages, 6 figures. The Astrophysical Journal, in pres

    A search for Lyman Break Galaxies at z>8 in the NICMOS Parallel Imaging Survey

    Get PDF
    We have selected 14 J-dropout Lyman Break Galaxy (LBG) candidates with J110 - H160 > 2.5 from the NICMOS Parallel Imaging Survey. This survey consists of 135 square arcminutes of imaging in 228 independent sight lines, reaching average 5 sigma sensitivities of J110 = 25.8 and H160 = 25.6 (AB). Distinguishing these candidates from dust reddened star forming galaxies at z ~ 2-3 is difficult, and will require longer wavelength observations. We consider the likelihood that any J-dropout LBGs exist in this survey, and find that if L*(z=9.5) is significantly brighter than L*(z=6) (a factor of four), then a few J-dropout LBGs are likely. A similar increase in luminosity has been suggested by Eyles et al. and Yan et al., but the magnitude of this increase is uncertain.Comment: Accepted to ApJ Letter

    Near-Infrared Properties of Faint X-rays Sources from NICMOS Imaging in the Chandra Deep Fields

    Full text link
    We measure the near-infrared properties of 42 X-ray detected sources from the Chandra Deep Fields North and South, the majority of which lie within the NICMOS Hubble Deep Field North and Ultra Deep Field. We detect all 42 Chandra sources with NICMOS, with 95% brighter than H = 24.5. We find that X-ray sources are most often in the brightest and most massive galaxies. Neither the X-ray fluxes nor hardness ratios of the sample show any correlation with near-infrared flux, color or morphology. This lack of correlation indicates there is little connection between the two emission mechanisms and is consistent with the near-infrared emission being dominated by starlight rather than a Seyfert non-stellar continuum. Near-infrared X-ray sources make up roughly half of all extremely red (J-H > 1.4) objects brighter than H > 24.5. These red X-ray sources have a range of hardness ratios similar to the rest of the sample, decreasing the likelihood of dust-obscured AGN activity as the sole explanation for their red color. Using a combination of spectroscopic and photometric redshifts, we find the red J-H objects are at high redshifts (z > 1.5), which we propose as the primary explanation for their extreme J-H color. Measurement of rest-wavelength absolute B magnitudes shows that X-ray sources are the brightest optical objects at all redshifts, which explains their dominance of the bright end of the red J-H population.Comment: 29 pages, 7 figures, accepted by Ap

    Physiological Differences Between Low Versus High Skeletal Muscle Hypertrophic Responders to Resistance Exercise Training: Current Perspectives and Future Research Directions

    Get PDF
    Numerous reports suggest there are low and high skeletal muscle hypertrophic responders following weeks to months of structured resistance exercise training (referred to as low and high responders herein). Specifically, divergent alterations in muscle fiber cross sectional area (fCSA), vastus lateralis thickness, and whole body lean tissue mass have been shown to occur in high versus low responders. Differential responses in ribosome biogenesis and subsequent protein synthetic rates during training seemingly explain some of this individual variation in humans, and mechanistic in vitro and rodent studies provide further evidence that ribosome biogenesis is critical for muscle hypertrophy. High responders may experience a greater increase in satellite cell proliferation during training versus low responders. This phenomenon could serve to maintain an adequate myonuclear domain size or assist in extracellular remodeling to support myofiber growth. High responders may also express a muscle microRNA profile during training that enhances insulin-like growth factor-1 (IGF-1) mRNA expression, although more studies are needed to better validate this mechanism. Higher intramuscular androgen receptor protein content has been reported in high versus low responders following training, and this mechanism may enhance the hypertrophic effects of testosterone during training. While high responders likely possess “good genetics,” such evidence has been confined to single gene candidates which typically share marginal variance with hypertrophic outcomes following training (e.g., different myostatin and IGF-1 alleles). Limited evidence also suggests pre-training muscle fiber type composition and self-reported dietary habits (e.g., calorie and protein intake) do not differ between high versus low responders. Only a handful of studies have examined muscle biomarkers that are differentially expressed between low versus high responders. Thus, other molecular and physiological variables which could potentially affect the skeletal muscle hypertrophic response to resistance exercise training are also discussed including rDNA copy number, extracellular matrix and connective tissue properties, the inflammatory response to training, and mitochondrial as well as vascular characteristics

    DYNAMO-I. A sample of Ha-luminous galaxies with resolved kinematics

    Get PDF
    DYNAMO is a multiwavelength, spatially resolved survey of local (z ~ 0.1) star-forming galaxies designed to study evolution through comparison with samples at z ≃ 2. Half of the sample has integrated Hα luminosities of >1042 erg s-1, the typical lo

    ArborZ: Photometric Redshifts Using Boosted Decision Trees

    Full text link
    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of Boosted Decision Trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single "best estimate" and error, and also provides a photo-z quality figure-of-merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.Comment: 10 pages, 13 figures, submitted to Ap

    Influence of magnetic fields on magneto-aerotaxis

    Get PDF
    The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the response of the organisms, and the ability to generate a controlled physiological magnetic field. We have thus developed a multi-modal microscopy platform that fulfils these requirements. Using simultaneous fluorescence and high-speed imaging in conjunction with diffusion and aerotactic models, we characterized the magneto-aerotaxis of Magnetospirillum gryphiswaldense. We assessed the influence of the magnetic field (orientation; strength) on the formation and the dynamic of a micro-aerotactic band (size, dynamic, position). As previously described by models of magnetotaxis, the application of a magnetic field pointing towards the anoxic zone of an oxygen gradient results in an enhanced aerotaxis even down to Earth's magnetic field strength. We found that neither a ten-fold increase of the field strength nor a tilt of 45° resulted in a significant change of the aerotactic efficiency. However, when the field strength is zeroed or when the field angle is tilted to 90°, the magneto-aerotaxis efficiency is drastically reduced. The classical model of magneto-aerotaxis assumes a response proportional to the cosine of the angle difference between the directions of the oxygen gradient and that of the magnetic field. Our experimental evidence however shows that this behaviour is more complex than assumed in this model, thus opening up new avenues for research
    corecore