845 research outputs found

    Mixing in density- and viscosity-stratified flows

    Get PDF
    The lock-exchange problem is used extensively to study the flow dynamics of density-driven flows, such as gravity currents, and as a canonical problem to mixing in stratified flows. Opposite halves of a domain are filled with two fluids of different densities and held in place by a lock-gate. Upon release, the density difference drives the flow causing the fluids to slosh back and forth. In many scenarios, density stratification will also impose a viscosity stratification (e.g., if there are suspended sediments or the two fluids are distinct). However, numerical models often neglect variable viscosity. This paper characterizes the effect of both density and viscosity stratification in the lock-exchange configuration. The governing Navier-Stokes equations are solved using direct numerical simulation. Three regimes are identified in terms of the viscosity ratio μ 2 / μ 1 = (1 + γ) between the dense and less dense fluids: when γ ≪ 1, the flow dynamics are similar to the equal-viscosity case; for intermediate values (γ ∼ 1), viscosity inhibits interface-scale mixing leading to a global reduction in mixing and enhanced transfer between potential and kinetic energy. Increasing the excess viscosity ratio further (γ ≫ 1) results in significant viscous dissipation. Although many gravity or turbidity current models assume constant viscosity, our results demonstrate that viscosity stratification can only be neglected when γ ≪ 1. The initial turbidity current composition could enhance its ability to become self-sustaining or accelerating at intermediate excess viscosity ratios. Currents with initially high excess viscosity ratio may be unable to dilute and propagate long distances because of the decreased mixing rates and increased dissipation

    Pulse propagation in gravity currents

    Get PDF
    Real world gravity current flows rarely exist as a single discrete event, but are instead made up of multiple surges. This paper examines the propagation of surges as pulses in gravity currents. Using theoretical shallow-water modeling, we analyze the structure of pulsed flows created by the sequential release of two lock-boxes. The first release creates a gravity current, while the second creates a pulse that eventually propagates to the head of the first current. Two parameters determine the flow structure: the densimetric Froude number at the head of the current, Fr, and a dimensionless time between releases, tre. The shallow-water model enables the flow behavior to be mapped in (Fr, tre) space. Pulse speed depends on three critical characteristic curves: two that derive from the first release and correspond to a wavelike disturbance which reflects between the head of the current and the back of the lock-box and a third that originates from the second release and represents the region of the flow affected by the finite supply of source material. Pulses have non-negative acceleration until they intersect the third characteristic, after which they decelerate. Variations in pulse speed affect energy transfer and dissipation. Critically for lahars, landslides, and avalanches, pulsed flows may change from erosional to depositional, further affecting their dynamics. Gravity current hazard prediction models for such surge-prone flows may underpredict risk if they neglect internal flow dynamics

    Interpreting syndepositional sediment remobilization and deformation beneath submarine gravity flows; a kinematic boundary layer approach

    Get PDF
    Turbidite sandstones and related deposits commonly contain deformation structures and remobilized sediment that might have resulted from post-depositional modification such as downslope creep (e.g. slumping) or density-driven loading by overlying deposits. However, we consider that deformation can occur during the passage of turbidity currents that exerted shear stress on their substrates (whether entirely pre-existing strata, sediment deposited by earlier parts of the flow itself or some combination of these). Criteria are outlined here, to avoid confusion with products of other mechanisms (e.g. slumping or later tectonics), which establish the synchronicity between the passage of overriding flows and deformation of their substrates. This underpins a new analytical framework for tracking the relationship between deformation, deposition and the transit of the causal turbidity current, through the concept of kinematic boundary layers. Case study examples are drawn from outcrop (Miocene of New Zealand, and Apennines of Italy) and subsurface examples (Britannia Sandstone, Cretaceous, UK Continental Shelf). Example structures include asymmetric flame structures, convolute lamination, some debritic units and injection complexes, together with slurry and mixed slurry facies. These structures may provide insight into the rheology and dynamics of submarine flows and their substrates, and have implications for the development of subsurface turbidite reservoirs

    The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    Get PDF
    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society

    Inadequacy of fluvial energetics for describing gravity current autosuspension

    Get PDF
    Gravity currents, such as sediment-laden turbidity currents, are ubiquitous natural flows that are driven by a density difference. Turbidity currents have provided vital motivation to advance understanding of this class of flows because their enigmatic long run-out and driving mechanisms are not properly understood. Extant models assume that material transport by gravity currents is dynamically similar to fluvial flows. Here, empirical research from different types of particle-driven gravity currents is integrated with our experimental data, to show that material transport is fundamentally different from fluvial systems. Contrary to current theory, buoyancy production is shown to have a non-linear dependence on available flow power, indicating an underestimation of the total kinetic energy lost from the mean flow. A revised energy budget directly implies that the mixing efficiency of gravity currents is enhanced

    Graphics Processing Unit Accelerated Lattice Boltzmann Method Simulations of Dilute Gravity Currents

    Get PDF
    Lattice Boltzmann method models offer a novel framework for the simulation of high Reynolds number dilute gravity currents. The numerical algorithm is well suited to acceleration via implementation on massively parallel computer architectures. Here we present two lattice Boltzmann method models of lock-exchange dilute gravity currents, in which the largest turbulent length scales are directly resolved. The three-dimensional simulations are accelerated by exporting computations to a graphics processing unit and are validated against experiments and high-resolution simulations for Reynolds numbers up to 30,000. The lattice Boltzmann method models achieve equivalent accuracy to conventional large eddy simulation models in the prediction of key flow properties. A conservative analysis of computational performance relative to conventional methods indicates that the presented framework reduces simulation times by two orders of magnitude. Therefore, it can be used as a foundation for the development of depth-resolving models that capture more of the complexity of environmental gravity currents.Comment: 59 pages, 14 figure

    Probabilistic Determination of the Role of Faults and Intrusions in Helium‐Rich Gas Fields Formation

    Get PDF
    Natural gas fields with economic helium (>0.3 He %) require the radioactive decay of crustal uranium (U) and thorium (Th) to generate He and tectonic/structural regimes favorable to releasing and concentrating He. An unknown is determining the role of faults and structural features in focusing deep‐seated He sources on shallow accumulations. We tested the correlation between high‐He wells (n = 94) and structural features using a new high‐resolution aeromagnetic survey in the Four Corners area, USA. A depth‐to‐basement map with basement lineaments/faults, an intrusion map, and a flattened basement structural high map were created using Werner deconvolution algorithms by combining magnetic, gravity, and topography data with magnetic and gravity depth profiles. We show quantitatively (via analysis of variance) that a non‐random process controls the relationship between He (>0.3%) and both basement faults and intrusions: 88% of high‐He wells occur <1 km of basement faults; and 85% of high‐He wells occur <1 km of intrusions. As He % increases, the distance to the structural features decreases. Strong spatial/statistical correlations of He wells to both basement faults and intrusions suggest that advective transport via faults/intrusions facilitates He migration. The role of gas phase buoyancy and structural trapping is confirmed: 88% of high‐He occurs within basement structural highs, and 91% of the remaining wells are <1 km from intrusions (potential structural high). We present a composite figure to illustrate how a probabilistic approach can be used as a predictive model to improve He exploration success by targeting zones of intersection of basement faults and intrusions within basement structural highs

    Rate-Limiting Enzymes in Cardiometabolic Health and Aging in Humans

    Get PDF
    Introduction: Rate-limiting enzymes (RLEs) are innate slow points in metabolic pathways, and many function in bio-processes related to nutrient sensing. Many RLEs carry causal mutations relevant to inherited metabolic disorders. Because the activity of RLEs in cardiovascular health is poorly characterized, our objective was to assess their involvement in cardiometabolic health and disease and where altered biophysical and biochemical functions can promote disease. Methods: A dataset of 380 human RLEs was compared to protein and gene datasets for factors likely to contribute to cardiometabolic disease, including proteins showing significant age-related altered expression in blood and genetic loci with variants that associate with common cardiometabolic phenotypes. The biochemical reactions catalyzed by RLEs were evaluated for metabolites enriched in RLE subsets associating with various cardiometabolic phenotypes. Most significance tests were based on Z-score enrichment converted to p values with a normal distribution function. Results: Of 380 RLEs analyzed, 112 function in mitochondria, and 53 are assigned to inherited metabolic disorders. There was a depletion of RLE proteins known as aging biomarkers. At the gene level, RLEs were assessed for common genetic variants that associated with important cardiometabolic traits of LDL-cholesterol or any of the five outcomes pertinent to metabolic syndrome. This revealed several RLEs with links to cardiometabolic traits, from a minimum of 26 for HDL-cholesterol to a maximum of 45 for plasma glucose. Analysis of these GWAS-linked RLEs for enrichment of the molecular constituents of the catalyzed reactions disclosed a number of significant phenotype-metabolite links. These included blood pressure with acetate (p = 2.2 × 10−4) and NADP+ (p = 0.0091), plasma HDL-cholesterol and triglyceride with diacylglycerol (p = 2.6 × 10−5, 6.4 × 10−5, respectively) and diolein (p = 2.2 × 10−6, 5.9 × 10−6), and waist circumference with d-glucosamine-6-phosphate (p = 1.8 × 10−4). Conclusion: In the context of cardiometabolic health, aging, and disease, these results highlight key diet-derived metabolites that are central to specific rate-limited processes that are linked to cardiometabolic health. These metabolites include acetate and diacylglycerol, pertinent to blood pressure and triglycerides, respectively, as well as diacylglycerol and HDL-cholesterol

    Histone Acetylation-Mediated Regulation of the Hippo Pathway

    Get PDF
    The Hippo pathway is a signaling cascade recently found to play a key role in tumorigenesis therefore understanding the mechanisms that regulate it should open new opportunities for cancer treatment. Available data indicate that this pathway is controlled by signals from cell-cell junctions however the potential role of nuclear regulation has not yet been described. Here we set out to verify this possibility and define putative mechanism(s) by which it might occur. By using a luciferase reporter of the Hippo pathway, we measured the effects of different nuclear targeting drugs and found that chromatin-modifying agents, and to a lesser extent certain DNA damaging drugs, strongly induced activity of the reporter. This effect was not mediated by upstream core components (i.e. Mst, Lats) of the Hippo pathway, but through enhanced levels of the Hippo transducer TAZ. Investigation of the underlying mechanism led to the finding that cancer cell exposure to histone deacetylase inhibitors induced secretion of growth factors and cytokines, which in turn activate Akt and inhibit the GSK3 beta associated protein degradation complex in drug-affected as well as in their neighboring cells. Consequently, expression of EMT genes, cell migration and resistance to therapy were induced. These processes were suppressed by using pyrvinium, a recently described small molecule activator of the GSK 3 beta associated degradation complex. Overall, these findings shed light on a previously unrecognized phenomenon by which certain anti-cancer agents may paradoxically promote tumor progression by facilitating stabilization of the Hippo transducer TAZ and inducing cancer cell migration and resistance to therapy. Pharmacological targeting of the GSK3 beta associated degradation complex may thus represent a unique approach to treat cancer. © 2013 Basu et al
    corecore