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Abstract 

Lattice Boltzmann method models offer a novel framework for the simulation of high Reynolds number 

dilute gravity currents. The numerical algorithm is well suited to acceleration via implementation on 

massively parallel computer architectures. Here we present two lattice Boltzmann method models of 

lock-exchange dilute gravity currents, in which the largest turbulent length scales are directly resolved. 

The three-dimensional simulations are accelerated by exporting computations to a graphics processing 

unit and are validated against experiments and high-resolution simulations for Reynolds numbers up to 

30,000. The lattice Boltzmann method models achieve equivalent accuracy to conventional large eddy 

simulation models in the prediction of key flow properties. A conservative analysis of computational 

performance relative to conventional methods indicates that the presented framework reduces 

simulation times by two orders of magnitude. Therefore, it can be used as a foundation for the 

development of depth-resolving models that capture more of the complexity of environmental gravity 

currents. 
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Nomenclature 𝑐  Velocity quantum, 𝑐 = Δ𝑥/Δ𝑡 𝒄𝑖𝑗𝑘𝑄𝑚  Discrete set of 𝑚 velocities in a three-dimensional space where 𝑖, 𝑗, 𝑘 ∈ {1, 0, −1} 𝐶𝑛𝑟𝑠  Cumulant of order 𝑛 + 𝑟 + 𝑠 𝐶𝑛𝑟𝑠∗   Post collision cumulant of order 𝑛 + 𝑟 + 𝑠 𝐶𝑛𝑟𝑠𝑒𝑞   Equilibrium cumulant of order 𝑛 + 𝑟 + 𝑠 𝑐𝑠  Speed of sound in the lattice 𝐶𝑠  Smagorinsky constant 

CPU Central processing unit 𝐷  Diffusivity of the scalar field 𝐷𝑛𝑄𝑚  Defines a lattice structure with 𝑛 dimensions and 𝑚 velocities 

DNS Direct numerical simulation 𝑒𝐿1  𝐿1 error 𝒆𝑔  Unit vector in the direction of gravitational acceleration i.e., 𝒆𝑔 = (0,0, −1)𝑇 𝑓  Continuous particle distribution function 𝑭𝐵  Boussinesq forcing term 𝑓𝑖𝑗𝑘  Discretized particle distribution function 𝑓𝑖𝑗𝑘𝑒𝑞  Discretized equilibrium particle distribution function 𝐹𝑤  Total frictional force applied to the lower boundary 𝐹𝑤𝐿𝐵𝑀−𝐿𝐸𝑆  Total frictional force applied to the lower boundary in an LBM-LES simulation 𝐹𝑤𝐷𝑁𝑆  Total frictional force applied to the lower boundary in a DNS simulation 𝐹𝑟  Froude number 𝑮  Macroscopic body force acting on the flow 𝑔  Gravitational acceleration  𝑔′  Reduced gravity 

GPU Graphics processing unit 𝐻  Channel depth ℎ0   Initial current depth ℎ𝑓  Height of the current head 𝐿1  Length of the computational domain in the x direction 𝐿2  Length of the computational domain in the y direction 𝐿3  Length of the computational domain in the z direction 

LBM Lattice Boltzmann method 

LBM-GPU Lattice Boltzmann method solver that ports computations to a graphics processing 

unit 
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LBM-LES Lattice Boltzmann method model that uses a large eddy simulation turbulence 

model  

LES Large eddy simulation 𝑀𝑛𝑟𝑠  Factorized central moments of order 𝑛 + 𝑟 + 𝑠 𝑀𝑛𝑟𝑠∗   Post collision factorized central moments of order 𝑛 + 𝑟 + 𝑠 𝑚ΑBC  Raw moments of order 𝐴 + 𝐵 + 𝐶 

MNUPS Million node updates per second 𝑁𝐿3   Number of nodes discretizing the 𝐿3 dimension of the computational domain 𝑁𝑛𝑜𝑑𝑒𝑠  Total number of nodes in the computational domain 𝑁𝑡  Number of timesteps for which a results file was written to the hard drive 

NS Navier-Stokes 

NS-DNS A method that solves the Navier-Stokes equations and resolves all scales of the 

turbulent flow 

NS-LES A method that solves the Navier-Stokes equations and uses a large eddy 

simulation turbulence model 𝑃  Pressure 𝑃𝑗  A list of 𝑛 processors i.e., 𝑃𝑗 ∈ {𝑃1, 𝑃2, … , 𝑃𝑛}.   𝑝𝑘  Kinematic pressure 𝑅𝑒𝑏  Buoyancy Reynolds number 𝑅𝑒𝑐𝑟  Critical buoyancy Reynolds number 𝑆̅  Local stress tensor 𝑆𝑖𝑗𝑘  Momentum density source term in the lattice Boltzmann equation 𝑆𝑐  Schmidt number 𝑆𝑐𝑇  Turbulent Schmidt number 𝑡  Time 𝑡𝑃𝑗𝑖   A block of processing time on one of 𝑛 processors 𝑃𝑗 ∈ {𝑃1, 𝑃2, … , 𝑃𝑛} 𝑇𝐶𝑃𝑈  Total central processing unit time required to run a simulation 𝑇𝐸  Total elapsed time required to run a simulation 𝑇𝐸𝑛𝑑 Time at which the simulation is terminated 𝑡𝑖    A list of 𝑁𝑡 times at which a results file was output i.e., 𝑡𝑖 ∈ {𝑡1, 𝑡2, … , 𝑡𝑁𝑡} 𝑡𝐼𝑉  Time at which a lock-exchange gravity current transitions from the inertial to 

viscous phase 𝑡𝑆𝐼  Time at which a lock-exchange gravity current transitions from the slumping to 

inertial phase 
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𝑡𝑆𝑉  Time at which a lock-exchange gravity current transitions from the slumping to 

viscous phase 𝒖  Macroscopic velocity field 𝒖 = (𝑢, 𝑣, 𝑤)𝑇 𝑈𝑏  Buoyancy velocity  𝑢𝑓  Front velocity of the gravity current 𝑢𝜏  Friction velocity 𝑤𝑖𝑗𝑘𝑄𝑚  A constant set of weights corresponding to 𝑚 discrete velocities 𝒙  Position in cartesian coordinate system i.e., 𝒙 = (𝑥, 𝑦, 𝑧)𝑇 𝑥0  The distance of the lock gate from the start of the channel 𝑥𝑓  The distance between the current front and the initial lock gate position 𝑧𝑚𝑎𝑥+   The maximum 𝑧+ recorded across all wall-adjacent nodes throughout the duration 

of the simulation 𝑧+  Non-dimensional distance from the wall 𝛼  Coefficient of expansion Δ  Filter width Δ𝑡  Time step Δ𝑥  Grid spacing Δ𝑧1  Distance from a wall adjacent node to the boundary wall Δ𝑧2  Distance from a wall adjacent node to the nearest node in the wall normal 

direction 𝛿𝜌  The component of fluid density that fluctuates around the mean 𝜅𝑛𝑟𝑠  Central moments of order 𝑛 + 𝑟 + 𝑠 𝜈  Viscosity of the ambient fluid 𝜈𝑇  Local eddy viscosity 𝝃  Particle velocity field 𝝃 = (𝜉𝑥 , 𝜉𝑦, 𝜉𝑧) 𝚵  Velocity-frequency variable 𝜩 = {𝛯, 𝑌, 𝑍} 𝜉𝐼𝑃  Empirical constant that parameterizes the inertial phase scaling law  𝜉𝑉𝑃  Empirical constant that parameterizes the viscous phase scaling law 𝜌  Density �̿�  Mean density 𝜌0  Initial current density 𝜌𝑎  Density of the ambient fluid 𝜌𝑠  Solute density 𝜏  Characteristic relaxation time of the fluid 𝜏𝑤  Wall shear stress 
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𝜏Φ  Characteristic relaxation time of the scalar field Φ  Continuous particle distribution function for the scalar field Φ𝑖𝑗𝑘  Discretized particle distribution function for the scalar field  Φ𝑖𝑗𝑘𝑒𝑞   Discretized equilibrium particle distribution function for the scalar field  𝜒  Solute concentration 𝜒0  Initial solute concentration in the current 𝜒𝑎  Solute concentration of the ambient fluid Ω  Continuous collision operator Ω𝑖𝑗𝑘  Discretized collision operator 𝜔𝑛𝑟𝑠  Characteristic relaxation frequency of order 𝑛 + 𝑟 + 𝑠 ̂  accent:  Indicates that the variable has been non-dimensionalized by the length scale ℎ0 

and the velocity scale (𝑔′ℎ0)12 ̃  accent: Indicates that the variable has been non-dimensionalized by the length scale 𝐻 

and the velocity scale 𝑈𝑏 = (𝑔′𝐻)12 ̅  accent: Indicates that the variable has been span-wise averaged i.e., along the 𝐿2 direction 

1. Introduction 

Gravity currents are flows driven by the buoyancy forces that arise due to the action of gravity on a 

density gradient within a fluid. The broad class of environmental buoyancy-driven flows includes 

thermohaline flows1 and saline currents2, which are driven by temperature and salt-concentration 

gradients, respectively. Temperature and salinity gradients can occur simultaneously within a system, 

resulting in double-diffusive gravity currents.3 Density gradients may also be generated by the 

suspension of particles within the flow, as is the case in turbidity currents, which are ocean-floor 

underflows consisting of a dense mixture of fluid and sediment particles.4 In the case of turbidity 

currents, there is the added complexity of the current exchanging particulate material with the boundary 

through erosion and deposition, resulting in a two-way coupled relationship between the hydrodynamics 

of the flow and morphodynamics of the channel geometry.5,6 Direct observation and measurement of 

turbidity currents in the environment are rare due to the infrequent and destructive nature of the flow. 

Therefore, the dynamics are investigated through theoretical, experimental, and numerical modelling. 

The propagation of gravity currents is of broad interest in environmental fluid dynamics, with relevance 
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to research areas as diverse as the study of ocean current dynamics7, and the development of carbon 

capture and storage processes8. 

 

The lock-exchange saline gravity current experiment is the classical problem used to investigate the 

dynamics of dilute gravity currents. The conventional experimental set-up is illustrated in Figure 1, and 

consists of a straight channel of depth 𝐻 in which a relatively light ambient fluid of density 𝜌𝑎, is 

separated by a gate from a fluid of density 𝜌0 > 𝜌𝑎, and depth ℎ0. In the case of dilute gravity currents 

the density difference is small, (𝜌0 − 𝜌𝑎) 𝜌𝑎⁄ ≪ 1, hence the Boussinesq approximation can be applied, 

which assumes density variations are small enough to be neglected in the governing equations unless 

they are acted on by gravity.9 The reduced gravity of the system is defined as 𝑔′ = 𝑔 (𝜌0 − 𝜌𝑎) 𝜌𝑎⁄ , 

where 𝑔 is acceleration due to gravity. 

 

Figure 1: Lock-exchange gravity current parameters 

The gate is placed at a distance 𝑥0 from the start of the channel, and when removed, a gravity current 

is initiated by the resulting horizontal hydrostatic pressure gradient. The current propagates along the 

channel, with its front located at a distance 𝑥𝑓(𝑡) from the initial position of the gate (𝑥0), and at a 

height of ℎ𝑓(𝑡) above the lower boundary, where t denotes time. The channel depth (𝐻) is taken as the 

characteristic length scale of the flow, and the characteristic velocity scale is the buoyancy velocity 𝑈𝑏 = √𝑔′𝐻. These characteristic scales combine with the viscosity of the ambient fluid (𝜈) to define 

the buoyancy Reynolds number, 𝑅𝑒𝑏 = 𝑈𝑏𝐻 𝜈⁄ . 

 

Following a brief period of frontal acceleration, lock-exchange gravity currents exhibit three distinct 

phases; the slumping, inertial and viscous phases.10 In the slumping phase, the current front advances 
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at a constant velocity (𝑢𝑓) under a balance of pressure and drag forces.10–13 The Froude number of the 

current is defined as the non-dimensional front velocity in the slumping phase, 𝐹𝑟 = 𝑢𝑓𝑈𝑏.   

 

In the inertial phase, the flow is governed by a balance of inertial and buoyancy forces. It has been 

determined, through both theoretical modelling and empirical study, that in the inertial phase front 

location (𝑥𝑓) and velocity (𝑢𝑓) tend asymptotically towards Equations 1 and 2  respectively.10,14–16 In 

Equations 1-2, and throughout this paper, symbols with a ~ above them indicate values non-

dimensionalized by the characteristic length scale 𝐻, and velocity scale 𝑈𝑏.  

�̃�𝑓 = 𝜉𝐼𝑃(ℎ̃0�̃�0)13�̃�23 

1 

�̃�𝑓  = 23 𝜉𝐼𝑃(ℎ̃0�̃�0)13�̃�−13 

2 

The viscous phase is governed by the balance of viscous and buoyancy forces. Hoult15 derived a self-

similarity solution of the depth-averaged Navier-Stokes equations to determine the viscous spreading 

rate of oil slicks on the surface of fresh water. Huppert17 completed a similar analysis for the case of a 

dense viscous underflow over a no-slip boundary, which bears a closer relation to the lock-exchange 

problem, arriving at the scaling laws in Equations 3-4. 

�̃�𝑓 = 𝜉𝑉𝑃(ℎ̃03 �̃�03𝑅𝑒𝑏)15�̃�15 

3 

�̃�𝑓  = 15 𝜉𝑉𝑃(ℎ̃03 �̃�03𝑅𝑒𝑏)15�̃�−45 

4 

The empirical constant 𝜉𝐼𝑃 was originally set to 𝜉𝐼𝑃 = 1.6 by Hoult15, and 𝜉𝐼𝑃 = 1.47 by Huppert and 

Simpson10. Huppert17 set the viscous phase constant to 𝜉𝑉𝑃 = 1.13. The values of the empirical 
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constants were revised by Cantero et al.18, who fit the 𝜉𝐼𝑃 and 𝜉𝑉𝑃 using a range of experimental and 

numerical results, ultimately arriving at the best fit values of 𝜉𝐼𝑃 = 1.47 and 𝜉𝑉𝑃 = 3.2.  

 

The time of transition between the phases can be determined by equating the scaling laws18. Doing so 

results in the transition from the slumping to inertial phase occurring at �̃�𝑆𝐼, the transition from slumping 

to viscous occurring at �̃�𝑆𝑉, and the inertial to viscous phase transition occurring at �̃�𝐼𝑉, as shown in 

Equations 5-8 respectively. In the event that �̃�𝑆𝑉 < �̃�𝑆𝐼 the flow will transition straight from the slumping 

to viscous phase and bypass the inertial phase entirely. The parameterization of the constants 𝜉𝐼𝑃 and 𝜉𝑉𝑃, conducted by Cantero et al.18, had the effect of fitting the phase transition times predicted by the 

scaling laws to empirical data. The critical Reynolds number, above which the inertial phase develops, 

can be found by equating Equations 5 and 6, giving Equation 8.  

�̃�𝑆𝐼 = (2𝜉𝐼𝑃3𝐹𝑟)3 ℎ̃0�̃�0 

5  

�̃�𝑆𝑉 = (15 𝜉𝑉𝑃)54  (ℎ̃0�̃�0)34𝐹𝑟54 𝑅𝑒𝑏14  
6  

�̃�𝐼𝑉 = ( 3𝜉𝑉𝑃10𝜉𝐼𝑃)157 (ℎ̃0�̃�0)47𝑅𝑒𝑏37 

7  

𝑅𝑒𝑐𝑟 = (2𝜉𝐼𝑃3𝐹𝑟)12 (5Fr𝜉𝑉𝑃)5 ℎ̃0�̃�0 

8  

The time of transition from the slumping to inertial phase is a function of the initial non-dimensional 

lock length �̃�0. It is often convenient to alter the non-dimensionalization of velocity and length scales, 
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such that �̂� = �̃�𝑓 (ℎ̃0)12⁄ = 𝑢𝑓 (𝑔′ℎ0)12⁄  and �̂� = �̃�( ℎ̃0)12 �̃�0⁄ = 𝑡(𝑔′ℎ0)12 𝑥0⁄ , which causes the 

transition time to collapse down to  �̂�𝑆𝐼 = (2𝜉𝐼𝑃ℎ̃012 3𝐹𝑟⁄ )3.18 

 

A range of depth-resolving models have been developed to simulate the mechanics of dilute gravity 

currents. The models numerically solve the incompressible Navier-Stokes (NS) equations of mass and 

momentum conservation coupled, via the Boussinesq approximation, with an advection-diffusion 

equation for the scalar concentration field.19 As the dynamics of environmental gravity currents are 

substantially influenced by turbulent processes, such as turbulent mixing within the current and at the 

current-ambient interface, depth-resolving models are classified by the extent to which they resolve or 

model the turbulent length scales of the flow.  

 

Numerical studies using direct numerical simulation (DNS), in which all turbulent length scales are 

resolved, have been conducted for lock-exchange gravity current flows with low to moderate Reynolds 

numbers.18,20–26 However, due to the high levels of grid refinement required for DNS simulations, the 

approach is extremely computationally expensive, which precludes the study of highly turbulent flows 

in large complex domains of the sort observed in the environment.  

 

Reynolds-averaged Navier-Stokes (RANS) models, derived by time-averaging of the governing 

equations, have been applied to the simulation of dilute gravity currents with both fixed and deformable 

boundaries.27–32 Although RANS models are far less computationally expensive than DNS models, 

which has enabled the simulation of environmental scale flows, the inherent averaging of the governing 

equations reduces the accuracy with which they can capture the complex time-dependent turbulent flow 

features of gravity currents.  

 

In large-eddy simulation (LES) models, the largest length scales are directly resolved, while the sub-

grid scales of turbulent motion are modelled, usually using variants of the Smagorinsky model.33 The 
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grid resolution requirements for a well resolved gravity current simulation have been studied by 

Pelmard et al.34. NS-LES models benefit from enhanced accuracy relative to RANS approaches as they 

directly capture the large-scale turbulent flow features, whilst offering a less computationally expensive 

alternative to DNS.34–39 However, the computational expense of conventional NS-LES models is still 

considerable, limiting the insights that can be gained into the dynamics of dilute gravity currents, as it 

becomes prohibitively expensive to extend the models to incorporate more of the full complexity of 

real-world environmental flows. 

 

The lattice Boltzmann method (LBM) offers an alternative numerical framework to the aforementioned 

numerical methods, which all model fluid motion at the macroscopic scale, where the fluid and flow 

properties are continuous. The LB method differs fundamentally, as fluid motion is modelled at the 

mesoscopic scale, between macro and microscopic, where the fluid is described by a particle 

distribution function.40 The evolution of the particle distribution function is governed by the Boltzmann 

equation, which is discretized to form an explicit numerical scheme. Guo, Shi and Zheng (2002) Guo 

et al.41 first demonstrated that an LBM formulation equivalent to the Navier-Stokes equations, using 

the Boussinesq approximation to couple the governing equations, could effectively simulate flows 

driven by density gradients.  

 

LBM models have been formulated to solve the depth-averaged shallow water equations, to predict the 

current height and front velocity of gravity currents. 42 However, there is very limited research on the 

application of LBM models to the simulation of gravity currents, where the LBM formulation is 

equivalent to the Navier-Stokes equations, and the Boussinesq approximation is applied. Ottolenghi et 

al.43 published the first study of such a model, comparing the results of two and three-dimensional LBM 

large-eddy simulations (LBM-LES) of lock-exchange saline gravity currents against experimental data. 

Two-dimensional simulations were run for Reynolds numbers of 𝑅𝑒𝑏 ∈ {1000, 5000, 10000,30000}, and three-dimensional simulations were run for 𝑅𝑒𝑏 ∈ {1000, 5000, 10000}. Ottolenghi et 

al.43 made an initial comparison between the results of LBM simulations and experiments, 

demonstrating reasonable agreement with their experiments and theoretical results in the prediction of 
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some key flow characteristics, such as the Froude number, entrainment of ambient fluid, and lobe-cleft 

development at the head.  However, further validation is required, especially against DNS results, to 

determine whether the LBM framework can be used as an accurate numerical tool for the simulation of 

gravity currents.  

 

The present study aims to address this open question and establish the LBM-LES method as an accurate 

alternative numerical framework for studying dilute gravity currents.  Two LBM-LES codes, RAFSINE 

and VirtualFluids, are validated against a wide range of experimental data and high-resolution 

simulations. The key model performance tests, previously unaddressed in the literature,  include the 

careful validation of LBM model predictions of flow phase transition against experimental data and 

high-resolution simulations, study of LBM-LES model accuracy in the near-wall region, and a 

comparison of the LBM-LES model accuracy to conventional NS-LES models. The accuracy and 

stability of an LBM model are influenced by the details of its formulation. The Ottolenghi et al.43 LBM 

model uses a single relaxation time collision operator, which is the most widely used, but also the 

simplest of the available options. The LBM model implemented in VirtualFluids uses more advanced 

collision operators, creating potential for greater accuracy and stability in the simulations.44 

 

Additionally, the computational performance advantages of the LBM framework are also yet to be 

established. In the Ottolenghi et al.43  study, the LBM model is implemented in an in-house code that 

utilizes OpenMP parallelization on CPU cores, resulting in simulation times ranging from 1 to 5 days 

on a six-core desktop machine. The authors acknowledge that this does not reflect the potential 

computational efficiency of the approach. LBM models are particularly well suited to implementation 

on massively parallel machines, such as graphic processing units (GPUs) as the numerical scheme only 

contains calculations with locally defined variables. This allows LBM algorithms to effectively utilize 

the architecture of the GPU. When simulations are run on central processing units (CPUs) with multi-

core processors, the domain is divided between the various cores, which perform calculations in parallel 

and communicate when necessary. LBM model implementations on a GPU offer much greater potential 

for parallel fluid simulations than the CPU, as each node in the domain can be assigned to a different 
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thread and stepped forward in time in parallel, resulting in orders of magnitude reductions in simulation 

times.45 In the present study, simulations in RAFSINE and VirtualFluids are accelerated by exporting 

computations to a GPU. The computational performance of the LBM-GPU implementations is 

compared to conventional methods in the field to quantify the relative performance gains that are 

realized through the novel application of this framework. 

 

The paper is structured as follows: the methods used to develop the LBM-LES models and the NS-DNS 

validation simulations are detailed in Section 2; results and discussion regarding model accuracy and 

computational performance are presented in Section 3; finally, conclusions are delivered in Section 4.  

2. Methods 

2.1. Macroscopic Governing Equations 

The macroscopic governing equations of a dilute saline gravity current flow are those of mass and 

momentum conservation for an incompressible flow coupled, via the Boussinesq approximation, with 

an advection-diffusion equation for the scalar concentration field. In the Boussinesq limit density 

(𝜌(𝒙, 𝑡)) is a linear function of saline concentration and is defined in Equation 9, where  𝛼 =(𝜌𝑠 − 𝜌𝑎) 𝜌𝑎⁄ , 𝜌𝑠 is solute density, and 𝜒(𝒙, 𝑡) is solute concentration. Therefore, the macroscopic body 

force acting on the flow is 𝑮, defined in Equation 10, where 𝒆𝑔 = (0,0, −1)𝑇 is the unit vector in the 

direction of gravitational acceleration. The constant term in 𝑮 is absorbed into the pressure term of the 

momentum equation as hydrostatic pressure, 𝛁𝑃 = 𝛁(𝑝𝑘(𝒙, 𝑡) − 𝑔𝜌𝑎𝑧), where 𝑝𝑘 is kinematic 

pressure. Therefore, the flow is driven by the Boussinesq forcing term 𝑭𝐵, Equation 11. 𝜌(𝒙, 𝑡) = 𝜌𝑎(1 + 𝛼𝜒(𝒙, 𝑡)) 
9 

𝑮 = 𝑔𝜌𝑎(1 + 𝛼𝜒(𝒙, 𝑡))𝒆𝑔 

10 

𝑭𝐵 = 𝑔𝜌𝑎𝛼𝜒(𝒙, 𝑡)𝒆𝑔 

11 
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Solute concentration in the ambient and dense fluids are set to zero (𝜒𝑎 = 0) and unity (𝜒0 = 1) 

respectively. The governing equations are non-dimensionalized using the characteristic length scale 𝐻, 

and velocity scale 𝑈𝑏, resulting in the non-dimensional incompressible mass and momentum 

conservation equations (Equations 12-13), and an advection-diffusion equation for the scalar 

concentration field 𝜒(𝒙, 𝑡) = 𝜒(𝒙, 𝑡)/𝜒0 (Equation 14). Non-dimensional density is defined by the 

equation �̃�(𝒙, 𝑡) = (𝜌(𝒙, 𝑡) − 𝜌𝑎) (𝜌0 − 𝜌𝑎)⁄ . 𝜵 ∙ �̃� = 0 

12 

𝜕�̃�𝜕�̃� + �̃� ∙ �̃��̃� = −�̃��̃�+ 1𝑅𝑒𝑏 ∇̃𝟐�̃�+ 𝜒𝒆𝑔 

13 

𝜕𝜒𝜕�̃� + �̃� ∙ �̃�𝜒 = 1𝑅𝑒𝑏𝑆𝑐 𝛻𝟐�̃� 

14 

The governing equations contain two non-dimensional numbers, the buoyancy Reynolds number 

(𝑅𝑒𝑏 = 𝑈𝑏𝐻 𝜈⁄ ), and the Schmidt number (𝑆𝑐 = 𝜈 𝐷⁄ ), which is the ratio between the viscosity of the 

ambient fluid and the diffusivity of the scalar concentration field.  

2.2. The Lattice Boltzmann Method Framework 

Conventional depth-resolving models directly discretize the macroscopic governing equations and 

solve them numerically. The lattice Boltzmann method models fluid motion at the mesoscopic scale, 

i.e. between the micro and macroscopic scales. An overview of LBM theory is provided below, but 

readers are referred to Kruger et al.44 for a rigorous derivation. 

 

At the mesoscopic scale, distribution functions are the key variable and are used to represent the 

properties of a group of particles. The particle distribution function is an extension of volumetric mass 

density to include density in particle velocity space (𝜉𝑥 , 𝜉𝑦, 𝜉𝑧), hence in three-dimensions 𝑓(𝒙, 𝝃, 𝑡) 
has the units presented in Equation 15.  
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[𝑓(𝒙, 𝝃, 𝑡)] = 𝑘𝑔 ∙ 1𝑚3 ∙ 1(𝑚𝑠 )3 = 𝑘𝑔𝑠
3𝑚6  

15 

The particle distribution function is a function of the particle position vector (𝒙), particle velocity (𝝃), 
and time (𝑡). Therefore, the function returns the particle density within a specified velocity range at a 

given location and time. The total derivative of the particle distribution function produces the 

Boltzmann equation (Equation 16), which includes a source term 𝛺(𝑓) to account for the collision and 

subsequent redistribution of particles. In the present study, the external body force term in the 

Boltzmann equation is the Boussinesq forcing term 𝑭𝐵. 𝐷𝑓(𝒙, 𝝃, 𝑡) = 𝜕𝑡  𝑓(𝒙, 𝝃, 𝑡) +  𝝃 ∙ 𝛁𝑓(𝒙, 𝝃, 𝑡)  +  𝑭𝐵 ∙ 𝜕𝝃 𝑓(𝒙, 𝝃, 𝑡) =  𝛺(𝑓) 
16 

The Boltzmann equation with forces is discretized to produce the lattice Boltzmann equation (LBE) 

with a momentum density source term (𝑆𝑖𝑗𝑘) in Equation 17. This is an expression for the unknown 

distribution function 𝑓𝑖𝑗𝑘(𝒙, 𝑡), which is defined at the nodes of a lattice structure. The lattice is defined 

using the naming structure 𝐷𝑛𝑄𝑚, where 𝑛 indicates the number of spatial dimensions, and 𝑚 is the 

number of discrete velocities. Three lattice structures are shown in Figure 2, 𝐷3𝑄6, 𝐷3𝑄19, and 𝐷3𝑄27. Lattice nodes are connected by a set of discrete velocities (𝒄𝑖𝑗𝑘𝑄𝑚), where the indices 𝑖, 𝑗, 𝑘 can 

take the values ∈ {1, 0, −1}, corresponding to each component of velocity in a Cartesian coordinate 

system. The lattice spacing is defined as ∆𝑥, and particles move between site locations in time ∆𝑡. The 

LBE is second order accurate in both space and time. 44 𝑓𝑖𝑗𝑘(𝒙 + 𝒄𝑖𝑗𝑘𝑄𝑚∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖𝑗𝑘(𝒙, 𝑡) + 𝛺𝑖𝑗𝑘(𝑓𝑖𝑗𝑘) + 𝑆𝑖𝑗𝑘 

17 

The governing equations for macroscopic fluid flow, mass and momentum conservation can be 

recovered from the Boltzmann equation using asymptotic analysis46 or Taylor expansion47. The raw 

moments of the distribution function (𝑓𝑖𝑗𝑘) are calculated using Equation 18, where the order of the 

moment is determined by the sum of its indices Α + 𝐵 + 𝐶.  Macroscopic density and momentum 
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density are calculated from the zeroth and first order raw moments of 𝑓𝑖𝑗𝑘 respectively, as illustrated in 

Equations 19-20. 𝑚ΑBC = ∑ 𝑖Α𝑗𝐵𝑘𝐶𝑓𝑖𝑗𝑘𝑖,𝑗,𝑘  

18 

𝜌 = 𝑚000 = ∑𝑓𝑖𝑗𝑘𝑖,𝑗,𝑘  

19 

𝜌𝒖 = 𝜌(𝑚100, 𝑚010, 𝑚001) = (∑ 𝑖𝑓𝑖𝑗𝑘𝑖,𝑗,𝑘 + Δ𝑡2 𝐹𝐵𝑥 ,∑ 𝑗𝑓𝑖𝑗𝑘 + Δ𝑡2 𝐹𝐵𝑦𝑖,𝑗,𝑘 ,∑ 𝑘𝑓𝑖𝑗𝑘 + Δ𝑡2 𝐹𝐵𝑧𝑖,𝑗,𝑘 ) 

20 

 

Figure 2: Structure of a) D3Q6, b) D3Q19, and c) D3Q27 lattices. 

2.3. LBM Implementations 

An LBM gravity current model has been implemented in two codes, RAFSINE and VirtualFluids, 

which accelerate simulations by exporting computations to a GPU device. The broad structure of the 

LBM-GPU implementations is illustrated through a flowchart in Figure 3. The flowchart emphasizes 

the transfer of data between the CPU and GPU and is broad enough to apply to both RAFSINE and 

VirtualFluids. Both packages are structured such that the pre-processing of the simulation i.e., the 

definition of simulation parameters and geometry is performed on the CPU, and then data is exported 

to the GPU where the computations are accelerated. The two models utilize different collision operators 
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(𝛺𝑖𝑗𝑘), LES turbulence models, and GPU implementations, allowing for comparison of trade-offs in 

both accuracy and computational efficiency between the codes. 

 

Figure 3: Flowchart to outline the general structure of the LBM-GPU implementations in RAFSINE and VirtualFluids, with 

particular emphasis on the transfer of data between the CPU and GPU device.  

2.3.1. RAFSINE 

RAFSINE was first developed by Delbosc45 for the application of indoor airflow simulation. The 

version of the code applied in this study uses the BGK collision operator, which is also referred to as 

the single relaxation rate collision operator. The BGK approximation developed by Bhatnagar et al.48 

is widely used and is defined in Equation 21, where 𝑓𝑖𝑗𝑘𝑒𝑞 is the equilibrium particle distribution function, 

Equation 22. Bhatnagar et al.48 model the collision operator as the relaxation of the particle distribution 

function towards a state of local thermodynamic equilibrium. 

𝛺𝑖𝑗𝑘(𝑓) =  1𝜏 (𝑓𝑖𝑗𝑘𝑒𝑞 − 𝑓𝑖𝑗𝑘) 

21 

The equilibrium is parametrized by the local velocity, density, and the speed of sound (related to the 

temperature), which is assumed to be constant in this lattice Boltzmann model. The Maxwellian 

equilibrium is simplified to a second order in velocity Taylor expansion, as shown in Equation 22. 

  𝑓𝑖𝑗𝑘𝑒𝑞(𝒙, 𝑡) = 𝑤𝑖𝑗𝑘𝑄19𝜌(1 + 𝒖 ∙ 𝒄𝑖𝑗𝑘𝑄19𝑐𝑠2 + (𝒖 ∙ 𝒄𝑖𝑗𝑘𝑄19)𝟐2𝑐𝑠4 − 𝒖 ∙ 𝒖2𝑐𝑠2   ) 

22 
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The velocity set 𝒄𝑖𝑗𝑘𝑄19 and the constant set of weights 𝑤𝑖𝑗𝑘𝑄19 are defined in Equations 23-24 and 

correspond to the D3Q19 lattice, which is used to solve for the 𝑓𝑖𝑗𝑘 distribution in RAFSINE. The 

D3Q19 lattice is shown in Figure 2b. 

23 

𝑤𝑖𝑗𝑘𝑄19 {  
   

13 , ‖𝒄𝑖𝑗𝑘𝑄19‖ = 0118 , ‖𝒄𝑖𝑗𝑘𝑄19‖ = 1136 , ‖𝒄𝑖𝑗𝑘𝑄19‖ = √2
 

24 

The macroscopic viscosity (𝜈) is derived from the characteristic relaxation time of the fluid (𝜏), as 

shown in Equation 25, where 𝑐𝑠 = √∆𝑥2 (3∆𝑡2)⁄   is the speed of sound in the lattice.   

𝜈 = 𝑐𝑠2 (𝜏 − 12)∆𝑥2∆𝑡  

25 

The momentum density source term 𝑆𝑖𝑗𝑘 is defined in Equation 26.44 

𝑆𝑖𝑗𝑘 = (1 − ∆𝑡2𝜏)𝑤𝑖𝑗𝑘𝑄19 (𝒄𝑖𝑗𝑘𝑄19𝑐𝑠2 + (𝒄𝑖𝑗𝑘𝑄19(𝒄𝑖𝑗𝑘𝑄19)𝑇 − 𝑐𝑠2𝜹)𝒖𝑐𝑠4   ) ∙ 𝑭𝐵 

26  

RAFSINE is capable of simulating density driven flows by coupling two LBM equations, one for the 

conservation of mass and momentum in the fluid, and a second for the advection and diffusion of the 

concentration field (𝜒). The particle distribution function for the concentration field is Φ𝑖𝑗𝑘, and its 

zeroth order raw moment is the macroscopic concentration 𝜒, as shown in Equation 27. The equations 

𝒄𝑖𝑗𝑘∈{−1,0,1}𝑄19 = (𝑖𝑗𝑘) = [(000 ) , ( 100) , ( −100 ) , (010 ) , ( 0−10 ) , (001) , ( 00−1) , (110) , (−1−10 ) ,  ( 1−10 ), 
                                           (−110 ) , ( 101) , (−10−1) , ( 10−1) , ( −101 ) , (011) , ( 0−1−1) , ( 01−1) , ( 0−11 )] 
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are coupled via the Boussinesq approximation, as 𝜒 is used to update the local value of the forcing term 𝑭𝐵 at a given time step. 𝜒 = ∑Φ𝑖𝑗𝑘𝑖,𝑗,𝑘  

27 

The LBM-BGK equation for the Φ𝑖𝑗𝑘 distribution is presented in Equation 28, where Φ𝑖𝑗𝑘𝑒𝑞 (𝒙, 𝑡) is the 

equilibrium distribution, defined in Equation 29. The macroscopic diffusivity is determined by the 

relaxation time for the scalar field 𝜏Φ, as shown in Equation 30. 

Φ𝑖𝑗𝑘(𝒙 + 𝒄𝑖𝑗𝑘𝑄6Δ𝑡, 𝑡 + Δ𝑡 ) = Φ𝑖𝑗𝑘(𝒙, 𝑡) − 1𝜏Φ (Φ𝑖𝑗𝑘(𝒙, 𝑡) − Φ𝑖𝑗𝑘𝑒𝑞 (𝒙, 𝑡)) 

28 

Φ𝑖𝑗𝑘𝑒𝑞 (𝒙, 𝑡) = 𝑤𝑖𝑗𝑘𝑄6𝜒 (1 + 𝒖 ∙ 𝒄𝑖𝑗𝑘𝑄6𝑐𝑠2 ) 

29 

𝐷 = 𝑐𝑠2 (𝜏𝜙 − 12)∆𝑥2∆𝑡  

30 

A D3Q6 lattice (Figure 2a) is used to solve for the Φ𝑖𝑗𝑘 distribution in RAFSINE, in line with the 

formulation originally used by Delbosc et al.49. The lattice has the velocity set 𝒄𝑖𝑗𝑘𝑄6 , defined in Equation 

31, and a constant weight 𝑤𝑖𝑗𝑘𝑄6 = 1/6. 

𝒄𝑖𝑗𝑘∈{−1,0,1}𝑄6 = (𝑖𝑗𝑘) = [( 100) , ( −100 ) , (010 ) , ( 0−10 ) , (001) , ( 00−1)] 
31 

The code utilizes a standard Smagorinsky turbulence model, which is an LES approach that models 

energy damping due to sub-grid turbulence through a local eddy viscosity (𝜈𝑇), such that 𝜈 = 𝜈0 + 𝜈𝑇, 

as given by Hou et al.50. 
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𝜈𝑇 = 𝐶𝑠∆2|𝑆̅| 
32  

�̅� = 12 (𝛁𝒖 +  𝛁𝐮T) =  ∑ 𝒄𝑖𝑗𝑘𝑄19 ∙ 𝒄𝑖𝑗𝑘𝑄19 (𝑓𝑖𝑗𝑘 − 𝑓𝑖𝑗𝑘𝑒𝑞)𝑖,𝑗,𝑘  

33 

|𝑆̅| = 16𝐶𝑠Δ2 (√𝜈2 + 18𝐶𝑠2Δ2√�̅� �̅� − 𝜈) 

34  

The method assumes that small scale turbulence is isotropic and is implemented using Equation 32, 

where 𝐶𝑠 is the Smagorinsky constant, ∆ is the filter width, and 𝑆̅ is the local stress tensor, defined in 

Equation 33. The magnitude of the local stress tensor is calculated from Equation 34. The Smagorinsky 

constant is set to 𝐶𝑠 = 0.03, according to the recommendations of Delbosc45. 

 

The diffusivity of the scalar field is also influenced by the effects of sub-grid turbulence. In the 

Smagorinsky model diffusivity is calculated using Equation 35, as determined by Liu et al.51, where 𝑆𝑐𝑇 is the turbulent Schmidt number, which is taken to be equal to 𝐶𝑠.  
𝐷 = 𝑐𝑠2 ((𝜏Φ + 𝐶𝑠∆2|𝑆̅|𝑆𝑐𝑇 ) − 12)∆𝑥2∆𝑡  

35 

RAFSINE’s LBM implementation contains several measures to maximize computational efficiency 

when running on GPUs. These include a number of adaptations to optimize the utilization of the GPU’s 

memory bandwidth, such as eliminating redundant memory accesses, increasing data coalescence, and 

efficient reading/writing of distributions. Delbosc et al.49 demonstrated that the optimizations resulted 

in a computational performance just 6% below the maximum capacity of the available hardware. When 

validated against experimental data of thermal flow in a 32 𝑚3 room, RAFSINE simulated the flow at 

1.5 times real time on an NVIDIA Tesla C2070 GPU. 
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2.3.1. VirtualFluids 

VirtualFluids was developed by the Institute for Computational Modelling in Civil Engineering (iRMB) 

at TU Braunschweig. VirtualFluids utilizes more advanced collision operators, namely the factorized 

central moments method to solve for the advection-diffusion of the scalar field, and the cumulant 

collision operator to solve for the conservation of mass and momentum. A D3Q27 lattice, shown in 

Figure 2c, is used to solve for both the 𝑓𝑖𝑗𝑘 and Φ𝑖𝑗𝑘 distributions. The velocity set for the D3Q27 lattice 

is shown in Equation 36. 

36 

The factorized central moments (FCM) method was applied to the advection-diffusion equation by 

Yang et al.52. Whilst the BGK collision operator performs collisions in momentum space, relaxing 

distributions towards their equilibrium state, the factorized central moments method performs collisions 

in factorized central moments space. Moments of the discrete distribution function Φ𝑖𝑗𝑘  can be obtained 

by first converting Φ𝑖𝑗𝑘 into a continuous function using the Dirac delta function 𝛿, as shown in 

Equation 37. Φ(𝝃) = Φ(𝜉𝑥 + 𝜉𝑦 + 𝜉𝑧) = ∑Φ𝑖𝑗𝑘𝛿(𝑖𝑐 − 𝜉𝑥)𝛿(𝑗𝑐 − 𝜉𝑦)𝛿(𝑘𝑐 − 𝜉𝑧)𝑖,𝑗,𝑘  

37 

The central moment generating function is then obtained by applying a bi-lateral Laplace transform to 

the function Φ(𝒖 − 𝝃), as shown in Equation 38. These are referred to as central moments, as Φ(𝝃) has 

been shifted into the frame of reference of the macroscopic fluid moving with velocity 𝒖.  𝐹(𝚵) ≔ ℒ{Φ(𝒖 − 𝝃)}(𝚵) 

𝒄𝑖𝑗𝑘∈{−1,0,1}𝑄27 = (𝑖𝑗𝑘) = [(000 ) , ( 100) , ( −100 ) , (010 ) , ( 0−10 ) , (001) , ( 00−1) , (110) , (−1−10 ) ,  ( 1−10 ), 
                                               (−110 ) , ( 101) , (−10−1) , ( 10−1) , ( −101 ) , (011) , ( 0−1−1) , ( 01−1) , ( 0−11 ), 
                                                 (111) , ( 1−11 ) , ( 11−1) , ( 1−1−1) , ( −111 ) , (−1−11 ) , (−11−1) , (−1−1−1)] 
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= 𝑒−𝚵∙𝒖∫ Φ(𝝃)𝑒𝚵∙𝝃𝒅𝝃∞
−∞   

= 𝑒−𝚵∙𝒖∑Φ𝑖𝑗𝑘∫ 𝛿(𝑖𝑐 − 𝜉𝑥)𝛿(𝑗𝑐 − 𝜉𝑦)𝛿(𝑘𝑐 − 𝜉𝑧)𝑒𝚵∙𝝃𝒅𝝃∞
−∞𝑖,𝑗,𝑘  

= ∑Φ𝑖𝑗𝑘𝑒Ξ(ic−u)+𝑌(𝑗𝑐−𝑣)+𝑍(𝑘𝑐−𝑤)𝑖,𝑗,𝑘  

38 

The moment generating function 𝐹(𝚵), is a function of the velocity-frequency variable 𝜩 = {𝛯, 𝑌, 𝑍}, 
and derivatives of 𝐹(𝚵) produce non-orthogonal central moments of Φ𝑖𝑗𝑘 of order (𝑛 + 𝑟 + 𝑠), as 

shown in Equation 39. 

𝜅𝑛𝑟𝑠 ≔ 𝑐−(𝑛+𝑟+𝑠) 𝜕𝑛𝜕𝑟𝜕𝑠𝜕Ξ𝑛𝜕𝑌𝑟𝜕𝑍𝑠 𝐹(𝚵)|𝚵=0 

= ∑(𝑖 − 𝑢)𝑛(𝑗 − 𝑣)𝑟(𝑘 − 𝑤)𝑠Φ𝑖𝑗𝑘𝑖,𝑗,𝑘  

39 

Statistical independence of the central moments can be achieved by factorizing them.53 The factorized 

central moments are calculated using Equations 40-49, where brackets are used to denote permutations 

of the indices.52 𝑀000 = 𝜅000 = 𝜒 

40 

𝑀(100) = 𝜅(100) 
41 

𝑀(110) = 𝜅(110) 
42 

𝑀111 = 𝜅111 

43 
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𝑀(200) = 𝜅(200) − 13𝜅000 

44 

𝑀(210) = 𝜅(210) − 13𝜅(010) 
45 

𝑀(220) = 𝜅(220) − 13𝜅000 

46 

𝑀(221) = 𝜅(221) − 19𝜅(001) 
47 

𝑀(211) = 𝜅(211) − 13𝜅(011) 
48 

𝑀222 = 𝜅222 − 127 𝜅000 

49 

Collision is then performed in moment space, where moments 𝑀𝑛𝑟𝑠 are relaxed at the frequency 𝜔𝑛𝑟𝑠, 
towards their equilibria, which for factorised central moments is set to zero. The post collision moments 𝑀𝑛𝑟𝑠∗  are calculated using Equation 50. 𝑀𝑛𝑟𝑠∗ = (1 − 𝜔𝑛𝑟𝑠)𝑀𝑛𝑟𝑠 

50 

When applied to the advection-diffusion equation, the only conserved moment is 𝑀000 = 𝜒. Diffusivity 

is calculated using the relaxation frequency of 𝜅(100), as shown in Equation 51. 

𝐷 = 13 ( 1𝜔100 − 12)∆𝑥2∆𝑡  

51 
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The VirtualFluids code solves the incompressible LBM equation in which fluid density is decomposed 

into its mean (�̿�) and fluctuating (𝛿𝜌) components, as shown in Equation 52. The 𝛿𝜌 component is 

calculated by the zeroth raw moment of the distribution 𝑓𝑖𝑗𝑘 (Equation 53), and the �̿� = 1 in lattice 

units. 𝜌 = �̿� + 𝛿𝜌 

52 

𝛿𝜌 = 𝑚000 = ∑𝑓𝑖𝑗𝑘𝑖,𝑗,𝑘  

53 

The cumulant collision operator is used to solve for mass and momentum conservation in the fluid.54 

The cumulant operator performs collisions in cumulant space, where cumulants are statistically 

independent observable quantities of the momentum distribution 𝑓𝑖𝑗𝑘. They are calculated from the 

series expansion of the logarithm of the moment generating function ℒ{𝑓(−𝝃)}(𝚵), as shown in 

Equation 54.  

𝐶𝑛𝑟𝑠 ≔ 𝑐−(𝑛+𝑟+𝑠) 𝜕𝑛𝜕𝑟𝜕𝑠𝜕Ξ𝑛𝜕𝑌𝑟𝜕𝑍𝑠 ln(ℒ{𝑓(−𝝃)}(𝚵))|𝚵=0 

54 

The post collision cumulants 𝐶𝑛𝑟𝑠∗  are calculated using Equation 55, where 𝐶𝑛𝑟𝑠𝑒𝑞  is the equilibrium 

cumulant. 𝐶𝑛𝑟𝑠∗ = (1 − 𝜔𝑛𝑟𝑠)𝐶𝑛𝑟𝑠 +𝜔𝑛𝑟𝑠𝐶𝑛𝑟𝑠𝑒𝑞  

55 

The process for performing efficient transformations between momentum space and cumulant space is 

detailed by Geier et al.55. As the cumulant collision operator is applied to the conservation of mass and 

momentum, the zeroth and first order cumulants are conserved, which relate to density and velocity as 

shown in Equations 56-57. 𝜌 = 𝐶000 

56 
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𝒖 = (𝑢, 𝑣, 𝑤) = (𝐶100, 𝐶010, 𝐶001) 
57 

Viscosity is calculated using the relaxation rate of the second order cumulants, Equation 58. 

𝜈 = 13 ( 1𝜔110 − 12)∆𝑥2∆𝑡  

58 

A cumulant collision operator is deemed to be more accurate than the BGK collision operator due to 

the incorporation of higher order velocity terms in the equilibrium and its Galilean invariant viscosity.54 

The current study applies the parameterized cumulant method of Geier et al.55. In this the relaxation 

rates of the third order cumulants are chosen to eliminate the leading order error in diffusion such that 

the handling of viscosity becomes essentially fourth order accurate. 

 

VirtualFluids does not incorporate a sub-grid eddy viscosity turbulence model which would destroy the 

advantage of the fourth order accuracy. To stabilize the method for resolutions not reaching DNS quality 

it is sufficient to add a limiter on the relaxation of the third order cumulants. Compared to adding an 

explicit sub-gird model the stabilized parametrized cumulant method has been shown to require half 

the resolution to obtain the same enstrophy production.56 The method was also successful in accurately 

predicting the drag crisis behind a sphere57, simulating flows with Reynolds numbers ranging from 200 

to 105. The approach taken by the cumulant method towards turbulence is to provide the highest 

possible accuracy even at low resolution while non-resolved scales are naturally cut off. Adding a sub-

grid model to the parameterized cumulant method has no known advantages and typically leads to 

inferior results.56  

 

VirtualFluids has been optimized to run on GPUs, using indirect addressing to facilitate simulation in 

complex geometries, and the Esoteric Twist data structure to minimize memory overhead and traffic on 

the GPU.58 
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Previous studies in VirtualFluids have considered passive scalar transport in which the cumulant and 

FCM kernels are one-way coupled, so buoyancy forces do not drive the flow.52,59 In the present study 

two-way coupling has been implemented to allow the simulation of a buoyancy driven gravity current 

flow. 

2.4. Nek5000 Direct Numerical Simulations 

Direct numerical simulations are run in the high-order solver Nek5000 to provide high-resolution 

simulation results against which to benchmark the LBM-LES codes, in addition to that already available 

in literature. Nek5000-v19.0 is a CFD solver developed by Argonne National Laboratory60 based on the 

spectral-element method (SEM)61. The approach discretizes the computational domain into E elements, 

each containing an Nth-order polynomial discretization. In the present study 7th order polynomials were 

used for optimal accuracy and performance.60 The non-dimensional governing equations outlined in 

Section 2.1 were solved in Nek5000 using 2nd order backward differential formula (BDF) and operator-

integration factor scheme (OIFS) extrapolation, which allows for a target Courant number of 2-5 whilst 

maintaining stability and accuracy.62 The residual tolerance for pressure was set to 10−9, while the 

tolerances for fluid velocity and concentration were set to 10−10. 

2.5. Lock-Exchange Saline Gravity Current Model 

The full list of test cases are presented in Table 1, where the channel dimensions (𝐿1,  𝐿2, 𝐿3 = 𝐻) are 

defined in Figure 4. 𝑁𝐿3  is the number of nodes used to resolve the channel depth 𝐻, and 𝑁𝑛𝑜𝑑𝑒𝑠 is the 

total number of mesh points in the computational domain. 

 

The LBM-LES models are validated against the DNS results published by Cantero et al.18,21, where 

simulations were run with buoyancy Reynolds numbers ranging from 𝑅𝑒𝑏 ∈ [895, 15000]. As DNS 

becomes prohibitively expensive at high Reynolds numbers, it was also necessary to validate against 

the experimental results of Ottolenghi et al.43, where experiments were conducted for Reynolds numbers 

ranging from 𝑅𝑒𝑏 ∈ [1000, 30000]. To achieve a more robust validation, DNS simulations were run 

in Nek5000 for Cases 2 and 4 in Table 1. 
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Case 

No. 

𝑅𝑒𝑏  𝐿3/𝑥0 𝐿1 𝐿2 𝑁𝐿3  

𝑁𝑛𝑜𝑑𝑒𝑠 
(106) 

Data Type Data Source 

1 895 1 25 1.5 100 37.5 DNS Cantero et al.18 

2 1000 1 15 1 100 15 DNS; Exp 

Nek5000; 

Ottolenghi et al. 43 

3 3450 1 25 1.5 100 37.5 DNS Cantero et al.18 

4 5000 1 15 1 100 15 DNS; Exp 

Nek5000; 

Ottolenghi et al.43 

5 8950 1 25 1.5 100 37.5 DNS Cantero et al.18 

6 10000 1 15 1 100 15 Exp Ottolenghi et al.43 

7 15000 1 25 1.5 104 42.2 DNS Cantero et al.21 

8 30000 1 15 1 140 41.2 Exp Ottolenghi et al.43 

Table 1: Saline current LBM-LES simulation parameters 

The geometry and boundary conditions used in Cases ∈  {2, 4, 6, 8}, outlined in Figure 4a, were selected 

to model the experimental conditions of Ottolenghi et al.43. A no-slip boundary condition for the 

velocity field and a no-flux boundary condition for the concentration field is applied on the upper and 

lower boundaries, end walls, and span-wise walls. The initial velocity was zero throughout the domain, 

while the concentration was set to 𝜒 = 1 within the lock, and 𝜒 = 0 elsewhere. 
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Figure 4: Initial and boundary conditions of saline gravity current simulations of a) Cases ∈ {2, 4, 6, 8} and b) Cases ∈{1, 3, 5, 7}. 
The geometry and boundary conditions applied in Cases ∈  {1, 3, 5, 7}, outlined in Figure 4b, are in 

alignment with those used by Cantero et al. (2007, 2008). A no-slip boundary condition for the velocity 

field and a no-flux boundary condition for the concentration field is applied on the upper and lower 

boundaries, while the end and span-wise wall are periodic, thereby producing a periodic array of gravity 

currents. The initial velocity was zero throughout the domain, while the concentration was set to 𝜒 = 1 

within the lock, and 𝜒 = 0 elsewhere. However, due to the periodic span-wise boundaries, a small 

random perturbation was applied at the surface of the gate to initiate a break-down into fully three-

dimensional flow. 

 

No-slip and no-flux boundary conditions in the LBM-LES models were implemented using half-way 

bounce-back boundary conditions, as is conventional in the field.43,44,52,63 Simulations in RAFSINE and 

VirtualFluids were run on a regularly spaced grid of nodes with a non-dimensional grid spacing of Δ�̃�  = 𝐻/𝑁𝐿3 . The Nek5000 simulations for Cases 2 and 4 were run on grids of resolution 1600x120x120 and 2000x184x184 respectively.  

The LBM simulations are run in lattice units (LU), where conversion between LU and non-dimensional 

units is achieved through the length scale Δ�̃� , and time scale Δ�̃�. Appropriate Reynolds number scaling 
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in the LBM models is achieved by adjusting viscosity in lattice units. The characteristic velocity in 

lattice Boltzmann units is fixed at a value of 𝑈𝑏LU = 0.03 i.e., �̃�𝑏 = 𝑈𝑏LU Δ�̃�/Δ�̃� = 0.03Δ�̃�/Δ�̃�. This 

was motivated by the recommendations of Krüger et al.44 on maintaining accuracy and stability. As the 

value of the non-dimensional velocity scale is  �̃�𝑏 = 1, the non-dimensional time step for a simulation 

is given by Δ�̃� = 0.03/𝑁𝐿3. The reduced gravity for a simulation can then be calculated as �̃�′ =
𝑔′ LU Δ�̃�/Δ�̃�2 = 0.032𝑁𝐿3 Δ�̃�/Δ�̃�2. As the characteristic length scale 𝐻 = 𝑁𝐿3Δ�̃�, viscosity is calculated as 

𝜈 = 𝜈 LU Δ�̃�2/Δ�̃� = 𝑁𝐿30.03𝑅𝑒𝑏 Δ�̃�2/Δ�̃�, for a given Reynolds number. In this study the Schmidt number 

is set to 1, therefore 𝜈 = �̃� in all simulations. 

3. Results and Discussion 

In this section the LBM-LES models are assessed based on their ability to predict the following key 

characteristics of a lock-exchange gravity current; front location and velocity within the slumping 

phase, transition to the inertial and/or viscous phases, the development of the correct qualitative 

turbulent flow features in the head and body, and wall shear stress on the lower boundary. Additionally, 

the computational expense of the RAFSINE and VirtualFluids codes is compared to recently developed 

NS-LES models of equivalent accuracy. 

3.1. Slumping Phase 

As outlined in Section 1, the slumping phase is characterized by a period of constant front velocity, in 

which �̃�𝑓 ∝ �̃�. In the numerical simulations, the span-averaged location of the current head, �̅�𝑓, was 

determined by calculating the span-wise average of the density field, �̅�(�̃�, �̃�) = 1𝐿2 ∫ �̃�𝑑�̃�𝐿20 , and then 

searching from �̃� = 𝐿1 to �̃� = 0 for the first node with a density below the interface threshold of �̃� =0.02. This threshold has been used previously by Ottolenghi et al.43 and it was easily verified that the 

computed front location was insensitive to variations in the threshold. 

 

Plots of current front location against time are presented for each case in Figure 5, except for Case 7 as 

validation data was not readily available for a direct comparison in the Cantero et al.21 publication. The 
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�̃�𝑓 ∝ �̃� curve is also plotted for reference. In each case both RAFSINE and VirtualFluids accurately 

capture the slumping phase, predicting a constant gradient in �̅�𝑓 until �̃� ≈ 10.  Additionally, within the 

slumping phase, the computed front locations from both LBM-LES codes are in close agreement with 

the DNS results of Nek5000 and the Cantero et al.18 study. In cases 6 and 8, where the codes are 

validated against experimental results, good agreement is observed with the experiments and LBM 

simulations of Ottolenghi et al.43. 

 

The accuracy of the slumping phase simulation can be verified more quantitively through the Froude 

number, defined in Equation 59 as the constant non-dimensional front velocity within the slumping 

phase. It is evaluated within the time range of 2.5 ≤ �̃� ≤ 10.  

𝐹𝑟 = 𝑑�̅�𝑓𝑑𝑡 |2.5≤�̃�≤10 

59 

The percentage error in the front velocity predictions of RAFSINE and VirtualFluids are presented in 

Table 2, where error is calculated relative to the results in the validation sources listed in Table 1, and 

is reported to two decimal places. All errors are less than 5%, demonstrating close quantitative 

agreement with the reference data. 

 

The accuracy of the Froude number predictions of both codes is equal to that of conventional NS-LES 

models. Ooi et al.64 reported Froude number predictions within ±0.01 of the reference data in their 

validation of a finite-volume LES code against the Hacker et al.65 lock-exchange experimental results, 

for Reynolds numbers of 𝑅𝑒𝑏 ∈ {30 980, 47 750, 87 750}. 
 

More recently, an LES study conducted by Pelmard et al.38, also using a finite-volume method code, 

observed an error of  approximately 4.17%, when validating the results of a 𝑅𝑒𝑏 = 60000 simulation 

against the experiments of Keulegan66.  
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Figure 5: Validation of the front location predictions of RAFSINE and VirtualFluids for a) Case 1, b) Case 2, c) Case 3, d) 

Case 4, e) Case 5, f) Case 6, and g) Case 8. Results are validated against the DNS results from Nek5000 and those of Cantero 

et al.18, as well as the experimental and numerical results of Ottolenghi et al.43. In h) the front location prediction from the 𝑅𝑒𝑏 = 30000 Pelmard et al.34 NS-LES simulation is also plotted. 

Case 𝑅𝑒𝑏 DNS/Experimental Result VirtualFluids RAFSINE 

  Data Source Fr Fr Error (%) Fr Error (%) 

1 895 DNS - Cantero et al.18 0.36 0.37 2.70 0.36 0.00 

2 1000 DNS - Nek5000, Present Study 0.37 0.37 0.00 0.37 0.00 

3 3450 DNS - Cantero et al.18 0.41 0.41 0.00 0.40 2.44 

4 5000 DNS - Nek5000, Present Study 0.42 0.42 0.00 0.41 2.38 

5 8950 DNS - Cantero et al.18 0.42 0.43 2.38 0.41 2.38 

6 10000 Exp. - Ottolenghi et al.43 0.42 0.42 0.00 0.42 0.00 

7 15000 DNS - Cantero et al.21  0.42 0.44 4.65 0.42 0.00 

8 30000 Exp. - Ottolenghi et al.43 0.44 0.45 2.27 0.43 2.27 

Table 2:Validation of the Froude number predictions of RAFSINE and VirtualFluids against DNS results and experimental 

data. 

In Cases 4 and 6, 𝑅𝑒𝑏 ∈ {5000, 10000}, both RAFSINE and VirtualFluids demonstrate similar 

accuracy to the 3D LBM model of Ottolenghi et al.43, displaying errors of less than 3%. However in 

Case 2, 𝑅𝑒𝑏 = 1000, both RAFSINE and VirtualFluids predict the same Froude number as the DNS 

result, while the Ottolenghi et al.43 model has an error of 5.4%. Additionally, it is clear from Figure 5b 

that although there is close agreement in the front location predictions of RAFSINE/VirtualFluids and 

the Nek5000 result, there are discrepancies between the front location predicted by the Nek5000 DNS 

simulation and the numerical and experimental results of Ottolenghi et al.43.  These discrepancies are 

better understood through analysis of the front velocity and transition to the inertial and/or viscous 

phases of the flow, which is presented in Section 3.1. 

 

In addition to achieving close quantitative agreement with the reference DNS and experimental results, 

visualizations of the density fields in the LBM-LES simulations demonstrates that the models capture 
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the qualitative features of a slumping lock-exchange gravity current flow. Iso-contours of density �̃� =0.02, the chosen interface between the current and ambient, are presented in Figure 6 for cases with 𝑅𝑒𝑏 ∈ {1000, 5000, 10000, 30000} at �̃� = 10, to illustrate the development of turbulent flow features 

in the LBM-LES simulations across a range of Reynolds numbers. The iso-contours are plotted in a 

sub-region of the full computational domain, ranging from �̃� ∈ [0, 6],  �̃� ∈ [0, 1], and �̃� ∈ [0, 1]. 
 

Density iso-contours from the RAFSINE, VirtualFluids and Nek5000 DNS simulations of Case 2 and 

4, 𝑅𝑒𝑏 = 1000 and 5000, are presented in Figure 6a and b respectively. The results show that in both 

cases the structure of the current interface in the LBM-LES models shows close agreement with the 

DNS simulation. The iso-contours of Case 2, 𝑅𝑒𝑏 = 1000, do not exhibit any significant turbulent flow 

features. The interface between the dense current and ambient is relatively smooth and flat in the body, 

and the head advances as a unified front. The current interface in Case 4, 𝑅𝑒𝑏 = 5000, exhibits clear 

turbulent flow features, in agreement with observations from previous DNS simulations at similar 

Reynolds numbers.20 Lobe and cleft structures are visible at the lower boundary of the current front, 

due to instabilities at the head. Additionally, a region of turbulent mixing is evident at the current-

ambient interface in the body due to the Kelvin-Helmholtz instability. It is expected that subtle 

differences may be observed between the interface structure at a single time (e.g. �̃� = 10), as we are 

monitoring a turbulent time-dependant flow. Given this caveat, both RAFSINE and VirtualFluids show 

good agreement with the DNS result. 

 

The density iso-contours produced by the RAFSINE and VirtualFluids simulations of Cases 6 and 8 are 

presented in Figure 6c and d respectively. Unfortunately, DNS iso-contours are not available for direct 

comparison. Figure 6c and d show that, as anticipated, with the increasing Reynolds number there is an 

intensification of the turbulent flow features observed in Case 4, Figure 6b.  Whilst at low Reynolds 

numbers, there were negligible differences between the current-ambient interface in the RAFSINE and 

VirtualFluids simulations, significant differences are visible at higher Reynolds numbers.  
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Figure 6: Iso-contours of density �̃� = 0.02 at  �̃� = 10 in the Nek5000, VirtualFluids, and RAFSINE simulations. a) Case 2, 𝑅𝑒𝑏 = 1000; b) Case 4, 𝑅𝑒𝑏 = 5000; c) Case 6, 𝑅𝑒𝑏 = 10000; d) Case 8, 𝑅𝑒𝑏 = 30000. 

The interface in the VirtualFluids simulation exhibits more small-scale folds and structures relative to 

the RAFSINE result, a contrast that is most clearly observed in Figure 6d. Additionally, it is anticipated 

that with increasing Reynolds number, the size of lobes will decrease, and their number will 

increase.18,20,67 This trend is observed in the results of both LBM-LES models but appears to happen 

more rapidly in VirtualFluids. This is likely the result of differences in turbulence production due to 

shear on the lower boundary in both models. Validation of shear stress on the lower boundary, detailed 

in Section 3.2, indicates that shear stress is significantly underpredicted in RAFSNIE at high Reynolds 

numbers. As shear stress on the lower boundary is a key mechanism of turbulence generation, an 
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underprediction of shear stress would suppress the development of turbulent flow features. Despite 

these observable differences in the current-ambient interface, both LBM-LES models produce 

equivalent accuracy in Froude number predictions across the high Reynolds number cases, see Table 1. 

3.1. Transition to Inertial and Viscous Phases 

The transition between the various phases is most clearly observed through the span-wise averaged 

front velocity of the current  �̅�𝑓 = 𝑑�̅�𝑓𝑑𝑡 . Plots of span-wise averaged front velocity against time are 

presented in Figure 7 for cases with Reynolds numbers of 𝑅𝑒𝑏  ∈  {1000, 5000, 8950,10000, 15000, 30000}. In addition to the results from the validation data sources listed in Table 1, 

results are plotted from other lock-exchange experiments in the literature with relatively similar 

Reynolds numbers. The scaling law predictions, using the revised empirical constants determined by 

Cantero et al.18, are also plotted for each case. 

 

As outlined in Section 1, following the slumping phase the flow transitions into the inertial phase if the 

Reynolds number exceeds the critical value defined in Equation 8, in which case the inertial phase 

transition time (�̃�𝑆𝐼) is smaller than the viscous phase transition time (�̃�𝑆𝑉). It was therefore anticipated 

that the inertial phase would only develop in Cases 3-8. 

 

The results presented in Figure 7 permit comparison of the LBM-LES front velocity predictions against 

the scaling laws, experimental data, and DNS results. Each offers a source of validation but has its own 

limitations. As outlined in Section 1, the scaling laws are derived directly from the governing equations 

but contain empirical constants that are fit by collating experimental and numerical results. Therefore, 

although the asymptotic behavior of the front velocity with time should match the scaling law, there 

may be small errors in the quantitative prediction of front velocity. Additionally, as the scaling laws 

were parameterized using some of the empirical data plotted in Figure 7, the scaling laws and individual 

experimental results are not wholly independent sources of validation. 
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The experimental data is a record of a real-world lock-exchange gravity current flow but is itself subject 

to error. Errors may accumulate from the natural variability in the system, in the measurement of 

material properties, the measurement of concentration and velocity fields, and in the image post-

processing required to analyze the results. These limitations are revealed through the data spread when 

comparing experimental data sets from multiple sources with the same input parameters, as can be 

observed when comparing the spread of experimental data plotted in Figure 7a, Figure 7e, and Figure 

7f.  

 

DNS results provide the best source of validation data for theoretical and numerical models as the 

Navier-Stokes and advection-diffusion equations are solved directly across all length scales. Therefore, 

a DNS result forms an upper limit on simulation accuracy. However, a DNS or other numerical 

simulation result is still the solution of an idealized mathematical formulation of the problem, which 

may not map onto the physical reality and pragmatic constraints of a lock-exchange experiment.  

 

Simulations commonly assume perfectly smooth walls, while experiments will have some degree of 

microscale roughness which impacts drag.68 Additionally, the simulations assume instantaneous 

removal of the gate, while in reality subtle inconsistencies in the speed of gate removal may have a 

significant impact on the resulting current dynamics.69,70 Nevertheless, collectively the scaling laws, 

experimental data, and DNS results provide a framework for assessing the accuracy of LBM-LES 

models. 

 

From the relatively low Reynolds number cases (𝑅𝑒𝑏 ≤ 5000), the front velocity results for Cases 2 

and 4 have been selected (Figure 7a and b), as they allow for comparisons between the results of the 

Nek5000 DNS simulations, the predictions of RAFSINE and VirtualFluids, and the experimental and 

numerical results of Ottolenghi et al.43. In Case 5, where 𝑅𝑒𝑏 = 5000 and 𝐹𝑟 = 0.42, transition to the 

slumping phase occurs at �̃� ≈ 11 in the Nek5000 DNS model. The scaling laws predict that transition 

to the inertial phase should happen at �̃�𝑆𝐼 = 12.7, which is in reasonable agreement with the DNS result.  
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Figure 7: Validation of front velocity predictions of the LBM-LES models for a) Case 2, b) Case 4, c) Case 5, d) Case 6, e) 

Case 7, and f) Case 8. Results are validated against the DNS results from Nek5000 and those of Cantero et al.18,21, as well as 

comparison to the experimental and numerical result of Ottolenghi et a.l43. In h) the front location prediction from the 𝑅𝑒𝑏 ≈30000 Pelmard et al.34 NS-LES simulation is also plotted.  Front velocity within the inertial (IP) is compared to the theoretical 

scaling laws.10,13–15Within the viscous phase (VP) front velocity is compared to the theoretical scaling laws established by 

Huppert17. The scaling laws are calculated using 𝜉𝑝 = 1.47 and 𝜉𝑝,𝐻𝑝 = 3.2, which are the revised values as determined by 

Cantero et al.18. 

The transition time predicted by RAFSINE and VirtualFluids, as well as the experimental and numerical 

results of Ottolenghi et al.43 are in good agreement with the  DNS result. Within the inertial phase, front 

velocity in the DNS and LBM-LES simulations scale according to the �̅�𝑓 ∝ �̃�−13 law.  The scaling laws 

predict a short inertial phase with the transition to the viscous phase occurring at �̃�𝐼𝑉 = 15.4. Departure 

from inertial scaling at this time occurs in both the DNS and LBM-LES models, although the velocity 

then goes on to decay at a rate between the theoretical laws for the inertial and viscous phases. This 

may be due to the fact that the Reynolds number for Case 4, 𝑅𝑒𝑏 = 5000, is very close to the critical 

Reynolds number of 𝑅𝑒𝑐𝑟 = 3170, corresponding to a case with a Froude number of 𝐹𝑟 = 0.42. The 

critical Reynolds number is the threshold above which the current will transition from the slumping 

phase to the inertial phase, and below which the current will bypass the inertial phase, transitioning 

directly into the viscous phase.  In cases where 𝑅𝑒𝑏 ≫ 𝑅𝑒𝑐𝑟 or 𝑅𝑒𝑏 ≪ 𝑅𝑒𝑐𝑟, closer agreement is 

observed with the viscous scaling laws. 

 

For Case 2, where 𝑅𝑒𝑏 = 1000, the transition to the viscous phase occurs at �̃� ≈ 10 in the Nek5000 

DNS model. The scaling laws predict a direct transition from the slumping to viscous phase at  �̃�𝑆𝑉 =11.2, in reasonable agreement with the DNS output. Following the transition, front velocity in the DNS 

model scales according to the �̅�𝑓 ∝ �̃�−13 law as expected. The predictions of RAFSINE and VirtualFluids 

are in close agreement with the DNS result, both in the time of transition to the viscous phase and the 

subsequent decay in velocity. However, significant disparities are observed between the DNS result and 

the experimental and numerical predictions of Ottolenghi et al.43. The front velocity in the experiment 

declines to a constant value of �̅�𝑓 = 0.36, before transitioning to the viscous phase at �̃� ≈ 20, much 
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later than the transition time predicted by the scaling laws or observed in the DNS. The results of two 

experimental runs conducted by Amy et al.71 for Reynolds numbers of 950 and 1280 are also plotted 

for reference. The Amy et al.71 experiments also transition at �̃� ≈ 20, indicating that the Ottolenghi et 

al.43 result is not an anomaly, although there is a wide spread between the experimental front velocities 

post transition. The 3D LBM-LES simulation of Ottolenghi et al.43 also follows this trend. It is proposed 

that the difference between the DNS and experimental result is caused by greater turbulence generation 

in physical experiments relative to the DNS and LBM-LES simulations. Around the transitional 

Reynolds number, the experimental result may be more sensitive to additional sources of turbulence 

generation in the experiments, such as surface roughness, and disturbance triggered by the gate release, 

which makes the idealized DNS model a poorer representation of the experimental conditions. A review 

of the other cases shows that at higher Reynolds numbers (𝑅𝑒𝑏 ≥ 5000), the results of DNS simulations 

are in good agreement with experiments. 

 

The front velocity results for Case 5 are presented in Figure 7c. In Case 5, 𝑅𝑒𝑏 = 8950, the front 

velocity predictions of RAFSINE and VirtualFluids are validated against the DNS simulations of 

Cantero et al.18. The transition times predicted by the Cantero et al.18 DNS model are in very close 

agreement with the scaling laws, which predict �̃�𝑆𝐼 =12.7 and �̃�𝐼𝑉 = 19.8. Additionally, the scaling laws 

are a very good quantitative prediction of front velocity. Both RAFSINE and Virtual fluids show good 

agreement with the Cantero et al.18, correctly predicting transition times and scaling within each phase. 

An experimental result of Marino et al.72, experimental Run 3 (𝑅𝑒𝑏 = 8620), was also plotted for 

reference. The sparsity in front velocity readings makes direct comparison challenging, but the 

transition time to the inertial phase is in reasonable agreement with the Cantero et al.18 DNS model and 

LBM-LES simulations, although the onset of the viscous phase appears to occur later in the Marino et 

al.72 experimental run. 

 

In Case 6 (Figure 7d.), 𝑅𝑒𝑏 = 10000, the results of RAFSINE and VirtualFluids are very similar, both 

showing good agreement with the scaling law predictions of �̃�𝑆𝐼 =12.7 and �̃�𝐼𝑉 = 19.8. The LBM model 
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of Ottolenghi et al.43 shows good agreement with the scaling laws in the slumping and inertial phase, 

but does not transition to the viscous phase at the expected time. The experimental current of Ottolenghi 

et al.43 appears to begin a transition to the inertial phase at �̃� ≈12, and then front velocity plateaus, 

before decaying according to the inertial scaling law until �̃� ≈ 30. A similar trend is observed in the 

experimental run B0-1 of Amy et al.71, 𝑅𝑒𝑏 = 11400, although the onset of viscous scaling occurs at a 

later time due to the higher Reynolds number. 

 

For Case 7 (Figure 7e.), 𝑅𝑒𝑏 = 15000, the front velocity predictions of RAFSINE and VirtualFluids 

are validated against the DNS simulation of Cantero et al.21. The transition times in the Cantero et al.21 

DNS results are again in very close agreement with the scaling laws, which predict transition to the 

inertial and viscous phases at �̃�𝑆𝐼 =12.7 and �̃�𝐼𝑉 = 24.7. The LBM-LES models demonstrate good 

agreement with the DNS result, accurately predicting both phase transition times and scaling withing 

the phases.  Figure 7e. also includes plots from the 𝑅𝑒𝑏 = 15550 experiment of Marino et al.72, and the 𝑅𝑒𝑏 = 15700 experiment of Huppert and Simpson10. To the extent that either the RAFSINE or 

VirtualFluids simulation deviates from the DNS, they remain within the range of front velocities 

spanned by the two experimental results, indicating the models still offer a high degree of accuracy. 

 

Case 8 (Figure 7f.), 𝑅𝑒𝑏 = 30000, is beyond the range of DNS, but the predictions of the LBM-LES 

models can be validated against the experiments of Huppert and Simpson10 and Ottolenghi et al.43. 

Additionally, it is possible to compare performance against the finite-volume NS-LES model of 

Pelmard et al.34, who ran a lock-exchange simulation for 𝑅𝑒𝑏 = 28284. Since the experiment of 

Huppert and Simpson10 and simulation of Pelmard et al.34 have lock-lengths of  �̃�0 > 1, it is necessary 

to rescale velocity and time such that �̃�𝑓 (ℎ̃0)12⁄ = 𝑢𝑓 (𝑔′ℎ0)12⁄  and �̃�( ℎ̃0)12 �̃�0⁄ = 𝑡(𝑔′ℎ0)12 𝑥0⁄ , causing 

the transition to the inertial phase to collapse down to the same time regardless of lock-length, as 

outlined in Section 1. Both experimental results show close agreement with the scaling law prediction 

of �̃�𝑆𝐼( ℎ̃0)12 �̃�0⁄ = 11.0. The RAFSINE simulation transitions prematurely but shows close agreement 

with the experiments and scaling laws in the inertial phase. VirtualFluids and the NS-LES model of 
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Pelmard et al.34 transition closer to 
�̃�𝑆𝐼 ( ℎ̃0)12�̃�0 = 11, but the Pelmard et al.34 simulation decays more 

rapidly post transition. Both LBM-LES models displayed an equivalent degree of accuracy to the 

conventional NS-LES model of Pelmard et al.34, in the prediction of front velocity and phase transition 

in lock-exchange gravity currents. 

 

Insight into the internal dynamics of the gravity current can be gained from a review of the span-wise 

averaged density contours (�̅�) through time for Case 8, presented in Figure 8. The RAFSNE and 

VirtualFluids contours of �̅� in Case 8 both display the development of spanwise coherent, Kelvin-

Helmholtz instability induced, billows at early times (�̃� ≤ 5). Although these billows have been 

observed to undergo substantial growth in 2D simulations, it is anticipated that in a 3D simulation of a 

turbulent current, the billows will lose their span-wise coherence with time due to span-wise 

perturbations in the chaotic flow field.18,20,21,43 This process occurs in both LBM-LES models, with 

span-wise coherence of the Kelvin-Helmholtz billows disintegrating in the simulations by �̃� = 10. 
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Figure 8: Contour plots of span-wise averaged density in LBM-LES simulations of Case 8, 𝑅𝑒𝑏 = 30000, run in RAFSINE 

and VirtualFluids. Contours are plotted at times a) �̃� = 2.5, b) �̃� = 5.0, c) �̃� = 7.5, d) �̃� = 10.0, e) �̃� = 15.0, f) �̃� = 20.0, g) �̃� = 25.0.  

3.2. Near-Wall Region 

In this section the ability of the RAFSINE and VirtualFluids models to capture the near-wall flow 

characteristics of a saline gravity current are assessed by validation against DNS data from Cantero et 

al.21 and the Nek5000 simulations. Accurate prediction of the flow properties in the near-wall region is 

necessary for simulating a number of important physical processes in environmental gravity current 

flows, such as turbulence production due to lower boundary shear stresses, as well as erosion and 

deposition of stationary material at the boundaries. 

 

Accurate simulation of near-wall flow requires a high level of near wall resolution, which is measured 

by the non-dimensional distance (𝑧+) of the wall adjacent nodes from a no-slip boundary. The distance 

from a wall adjacent node to the boundary (Δ𝑧1) is non-dimensionalized by friction velocity (𝑢𝜏), and 

kinematic viscosity (𝜈), as shown in Equation 60. The friction velocity (𝑢𝜏) is defined in Equation 61, 

where 𝜏𝑤 is the wall shear stress, calculated using Equation 62.  

𝑧+ =  
�̃�𝜏Δ�̃�1𝜈  

60 

�̃�𝜏 = √�̃�𝑤/�̃� 

61 

�̃�𝑤 = �̃� 𝜕�̃�𝜕�̃�|𝑤𝑎𝑙𝑙 
62 

The velocity gradient at the lower boundary 
𝜕𝑢𝜕�̃�|𝑤𝑎𝑙𝑙 is calculated via a second-order accurate finite 

difference approximation at the wall, using the fluid velocity at the two nearest fluid nodes in the 𝒆𝑔 

direction. A schematic of near-wall grid spacing in Nek5000, RAFSINE, and VirtualFluids is presented 
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in Figure 9. The Nek5000 discretization has a wall node where 𝒖 = 0, and the two nearest fluid nodes 

in the �̂� direction are at spacings of Δ�̃�1, and Δ�̃�2 > Δ�̃�1 as grid spacing is non-uniform in the vertical 

direction. In the LBM-LES models the boundary is located at a distance Δ�̃�1 = Δ�̃�/2 from the nearest 

fluid node due to the use of the half-way bounce-back boundary condition.44 The second fluid node is 

then spaced at a distance of Δ�̃� from the wall adjacent node. As the Nek5000 DNS simulation has a 

non-uniform grid spacing in the vertical direction, and a larger number of mesh points relative to the 

LBM-LES models, the fluid nodes used in the Nek5000 velocity gradient approximations span a smaller 𝑧+ range. 

 

Figure 9: Schematic of near-wall grid spacing in Nek5000, RAFSINE and VirtualFluids. 

Pelmard et al.34, who investigated grid resolution requirements for wall resolved LES simulations of 

gravity currents, recommends that the maximum 𝑧+of a wall adjacent node must meet the criteria 𝑧+ <10 to sufficiently capture the boundary layer. The maximum 𝑧+ of wall-adjacent nodes, presented in 

Table 3, shows that this standard is met in all cases. Further to this condition, the maximum 𝑧+ is within 

the viscous sublayer of the current’s boundary layer, 𝑧+ ≤ 5, in all cases but Cases 7 and 8 in 

VirtualFluids, where 𝑧+ lies just within the buffer region 5 < 𝑧+ < 30. Overall, the range of maximum 𝑧+ values is equivalent to that used by Pelmard et al.34, who reported 2.5 < 𝑧𝑚𝑎𝑥+ < 7 across their 

simulations.  

Case 𝑹𝒆𝒃 

Max z+ of Wall-Adjacent Node 

RAFSINE VirtualFluids Nek5000 

1 895 0.57 0.60 ~ 

2 1000 0.56 0.59 0.11 
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3 3450 1.53 2.10 ~ 

4 5000 1.80 2.75 0.10 

5 8950 2.83 4.45 ~ 

6 10000 2.89 4.68 ~ 

7 15000 3.83 5.98 ~ 

8 30000 4.45 6.92 ~ 

Table 3: Maximum z+ of wall adjacent node in all numerical simulations 

 

Figure 10: Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids 

simulations against the Nek5000 DNS result for Case 2, 𝑅𝑒𝑏 = 1000. a) Contours of �̃�𝑤 on the lower boundary at �̃� = 8. b)  

Contours of �̃�𝑤 on the lower boundary at  �̃� = 20. c) Plot of span-wise averaged shear stress (𝜏̅𝑤) at �̃� = 8. d) Plot of span-

wise averaged shear stress (𝜏̅𝑤) at �̃� = 20. 

Verification of the maximum 𝑧+ requires the calculation of the non-dimensional wall shear stress (�̃�𝑤), 

which has been validated against DNS for Cases ∈ {2, 4, 7}. The validation of the �̃�𝑤 predictions of the 
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LBM-LES models against DNS of Case 2, 𝑅𝑒𝑏 = 1000, is presented in Figure 10, where contour plots 

of �̃�𝑤 at �̃� = 8   and �̃� = 20  are presented in Figure 10a and Figure 10b respectively. 

 

At �̃� = 8  the stress pattern in the DNS result is characterized by a region of high stress along the current 

front, followed by a fairly uniform stress distribution in the body, and very low shear stresses in the 

region behind the removed gate. There is a gradual increase in stress ahead of the front due to the 

displacement of ambient fluid by the flow. By �̃� = 20  two lobes have formed at the head, and the peaks 

in shear stress occur along the edges of the lobes. Behind the head, the spanwise stress distribution is 

relatively uniform but steadily decreases with distance from the head. Stresses ahead of the front are 

lower at �̃� = 20 as fluid is displaced less rapidly, due to the deacceleration of the current in the viscous 

phase. The stress distributions predicted by RAFSINE and VirtualFluids are both in very close 

agreement with the DNS contours.  

  

A more quantitative validation can be conducted by comparing plots of span-wise averaged wall shear 

stress 𝜏̅𝑤 = 1�̃�2 ∫ �̃�𝑤𝑑�̃��̃�20 , presented in Figure 10c and d for �̃� = 8 and �̃� = 20 respectively. Shear stress 

is plotted against the rescaled streamwise distance (�̃� − �̃�0) �̃�𝑓⁄ , where �̃�𝑓 is the front location predicted 

by a given numerical model at �̃� ∈ {8, 20}. This has the effect of collapsing the location of the front (�̃� − �̃�0 = �̃�𝑓) to (�̃� − �̃�0) �̃�𝑓⁄ = 1 on the graphs, which filters out errors in predicted front location in 

the LBM-LES models, allowing the stream-wise profiles of 𝜏̅𝑤 to be compared relative to the front of 

each current.  

 

The 𝜏̅𝑤 distribution in the DNS result exhibits a sharp spike in shear stress at the current front, followed 

by a smaller rounded peak in the body, after which stress decreases with distance from the head. Profiles 

of 𝜏̅𝑤 in RAFSINE and VirtualFluids show close quantitative agreement with the DNS result in the 

locations of peak 𝜏̅𝑤, although VirtualFluids appears to perform better in predicting the magnitude of 

the peak stress. This is reflected in the 𝑒𝐿1error in the total frictional force (𝐹𝑤) applied to the lower 
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boundary, defined in Equations 63-64, where �̃�𝑖 ∈ {�̃�1, �̃�2, … , �̃�𝑁𝑡} is a list of 𝑁𝑡 = 12 times at which a 

results file was output. 

𝑒𝐿1 = 1𝑁𝑡∑|𝐹𝑤𝐷𝑁𝑆(�̃�𝑖) − 𝐹𝑤𝐿𝐵𝑀−𝐿𝐸𝑆(�̃�𝑖)𝐹𝑤𝐷𝑁𝑆(�̃�𝑖) |𝑖  

63 

𝐹𝑤(�̃�, �̃�, �̃�𝑖) = ∫ ∫ �̃�𝑤(�̃�, �̃�, �̃�𝑖)𝑑�̃�𝑑�̃��̃�10
�̃�20  

64 

In Case 2, the 𝑒𝐿1 error in RAFSINE and VirtualFluids was 6.9% and 1.9% respectively, demonstrating 

that although both models show good agreement with the DNS result, the error in the VirtualFluids 

prediction is less than a third of the RAFSINE model error.  

 

Contours of �̃�𝑤 in the RAFSINE, VirtualFluids and Nek5000 simulations of Case 4 are presented in 

Figure 11a and b at �̃� = 8 and �̃� = 20 respectively. At �̃� = 8 the DNS contours display peaks in shear 

stress at the lobes of the current front, followed by a roughly circular region of high stress within the 

body. This secondary peak in stress is less evident at �̃� = 20, where the high stress regions are 

concentrated at the head. The qualitative stress distribution is well reproduced in RAFSINE and 

VirtualFluids, as both display high stresses at the current front, and a second circular high stress  
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Figure 11: Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids 

simulations against the Nek5000 DNS result for Case 4, 𝑅𝑒𝑏 = 5000. a) Contours of �̃�𝑤 on the lower boundary at �̃� = 8. b)  

Contours of �̃�𝑤 on the lower boundary at  �̃� = 20. c) Plot of span-wise averaged shear stress (𝜏̅𝑤) at �̃� = 8. d) Plot of span-

wise averaged shear stress (𝜏̅𝑤) at  �̃� = 20. 

region in the body at �̃� = 8. However, the contours indicate that the peaks in stress are lower in the 

RAFSINE model than in the DNS result. This is confirmed by the plots of span-wise averaged shear 

stress in Figure 11c and d. Although the qualitative structure of the 𝜏̅𝑤 profile is captured by RAFSINE, 

the magnitude of the peaks is substantially lower than the DNS result. The magnitude of the peak stress 

in the VirtualFluids result is in close agreement with the DNS at �̃� = 8, but is underpredicted at �̃� = 20. 

This is evident in the 𝑒𝐿1 errors for Case 4, where the VirtualFluids model has an error of 4.9%, still in 

good agreement with DNS, while the RAFSINE model error was 33.4%. This reflects a known 

limitation of the standard Smagorinsky turbulence model in the near wall region when simulating 

turbulent flows.34,36 As 𝐶𝑠 is held constant, see Section 2.3.1, the eddy-viscosity may be non-zero in the 
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near-wall region, which reduces the velocity gradient at the wall, thereby decreasing �̃�𝑤 and artificially 

increasing the thickness of the boundary layer. Although this can be overcome through the use of Van 

Driest style damping or a dynamic Smagorinsky model, researchers often use the standard Smagorinsky 

model when concerned with capturing flow features far from the wall.34,36,38,43 As outlined in Section 

2.3.1, the VirtualFluids LBM formulation does not include a sub-grid eddy-viscosity turbulence model, 

and so is not impacted by this limitation.  

 

Similar trends are observed in Case 7 (Figure 12). In this case the contour plots of �̃�𝑤, Figure 12a and 

b, are compared to those produced by Cantero et al.21, which unfortunately were published without a 

color scale, making direct comparison challenging. However, the streaking stress patterns in the head, 

clearly observable in the DNS result, are reproduced in both RAFSINE and VirtualFluids, as well as a 

banded region of high stress in the body at �̃� = 8. The stress distribution in RAFSINE is noticeably 

smoother than that observed in the Cantero et al.21 DNS result and VirtualFluids, which is due to the 

previously discussed spurious damping in the near-wall region caused by the standard Smagorinsky 

model. Plots of 𝜏̅𝑤, Figure 12c and d, show that RAFSINE substantially underpredicts shear stresses, 

while the VirtualFluids profile shows reasonable quantitative agreement, although still marginally 

underpredicting the frontal peak in stress. As Cantero et al.21 does not provide quantitative stress data 

for the lower boundary, but does provide plots of 𝜏̅𝑤 at �̃� = 8  and �̃� = 20, the 𝑒𝐿1 error is calculated 

using the spanwise averaged frictional force on the wall (�̅�𝑤), as shown in Equations 65-66, where  �̃�𝑖 ∈{8, 20}. Using this revised definition, the 𝑒𝐿1 error in RAFSINE becomes substantial at 50.6%, while 

the VirtualFluids model remains in good agreement with DNS at 8.8%. 

𝑒𝐿1 = 1𝑁𝑡∑|�̅�𝑤𝐷𝑁𝑆(�̃�𝑖) − �̅�𝑤𝐿𝐵𝑀−𝐿𝐸𝑆(�̃�𝑖)�̅�𝑤𝐷𝑁𝑆(�̃�𝑖) |𝑖  

65 

�̅�𝑤(�̃�, �̃�𝑖) = ∫ 𝜏̅𝑤(�̃�, �̃�𝑖)𝑑�̃��̃�10  

66 
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In a modelling scenario where close quantitative agreement with DNS is essential, errors could be 

reduced through the application of hierarchical grids to increase resolution in the near wall region.57 

 

Figure 12: Validation of predicted dimensionless shear stress on the lower boundary of the RAFSINE the VirtualFluids 

simulations against Cantero et al.21 result for Case 7, 𝑅𝑒𝑏 = 15000. a) Contours of �̃�𝑤 on the lower boundary at �̃� = 8. b) 

Contours of �̃�𝑤 on the lower boundary at �̃� = 20. c) Plot of span-wise averaged shear stress (𝜏̅𝑤) at  �̃� = 8. d) Plot of span-

wise averaged shear stress (𝜏̅𝑤) at  �̃� = 20. 

3.3. Computational Performance of the LBM-GPU Framework 

As outlined in Section 2.3, the LBM-LES codes are accelerated by exporting computations to a GPU at 

each time step, rather than completing the tasks on the CPU. The core motivation for shifting to this 

LBM-GPU framework is that GPU acceleration reduces the elapsed time of a simulation relative to an 

equivalent implementation that runs exclusively on CPUs. However, direct comparison between the 

computational performance of CPU and GPU implementations is complicated by the fact that they run 
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on different hardware using different data structures, and to the authors’ knowledge consensus on a 

suitable metric has not been established. 

 

When comparing the performance of two numerical models implemented to run across CPU cores, the 

total CPU time (𝑇𝐶𝑃𝑈) of each program, i.e. the total time taken to process instructions, would be used 

to measure the computational cost of the numerical models. The relationship between 𝑇𝐶𝑃𝑈 = ∑ 𝑡𝑃𝑗𝑖  𝑖,𝑗  

and elapsed time is illustrated in Figure 13a, where 𝑡𝑃𝑗𝑖  is a single block of processing time on one of 𝑛 

processors 𝑃𝑗 ∈ {𝑃1, 𝑃2, … , 𝑃𝑛}.  It seems appropriate to extend this metric of total CPU time to 

comparisons between conventional NS models written to run on CPUs and LBM implementations in 

which the CPU exports computations to a GPU.  

 

Figure 13: Schematic of total CPU time as it relates to a) CPU implementations, and b) GPU accelerated implementations. 

In both RAFSINE and VirtualFluids, total CPU time is approximately equal to elapsed time, as the 

programs are executed on a single CPU core that exports data to the GPU device, as illustrated in Figure 

13b.  Therefore, observed speedups in total CPU time as a result of the GPU acceleration will not 

translate directly into equivalent speed-ups in elapsed time relative to a NS model running exclusively 

on CPU cores. The realized reduction in elapsed time will depend upon the number of cores used to run 

the CPU code, the efficiency of the parallel implementation, and the time taken for input/output 

operations. 

 

Using this framework, the speedup offered by the GPU-accelerated LBM-LES codes relative to DNS 

in Nek5000 has been evaluated by comparing both total CPU time and elapsed time at low Reynolds 
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numbers (𝑅𝑒𝑏 ≤ 5000). The Nek5000 simulations were run on ARC4, part of the High-Performance 

Computing facilities at the University of Leeds UK. Compute nodes on the cluster contain two Intel 

Xeon Gold 6138 CPUs (‘Sky Lake’), each with 20 cores, a clock rate for non-AVX instructions of 

2.0GHz, and are connected with Infiniband EDR of 100Gbit/s. The 𝑅𝑒𝑏 = 1000 and 𝑅𝑒𝑏 = 5000  

Nek5000 simulations were run across 100 and 250 cores respectively. In the LBM-LES codes 

computations were exported to an NVIDIA V100 Tensor Core GPU. 

 

The speedups in 𝑇𝐶𝑃𝑈 and 𝑇𝐸 are presented in Table 4, where times are written in the format hrs:mins:sec. 

Both RAFSINE and VirtualFluids reduce total processing time relative to Nek5000 by a factor of 102 

for the 𝑅𝑒𝑏 = 1000 simulation, and 102.6 for the 𝑅𝑒𝑏 = 5000  case. This translates to a reduction in 

elapsed time of 101.2 and  102 for the respective cases, demonstrating significant speedups relative to 

DNS can be achieved whilst preserving accuracy in the prediction of key flow properties.  

Case 𝑅𝑒𝑏 

Nek5000 RAFSINE VirtualFluids 

𝑇𝐶𝑃𝑈(≈ 𝑇𝐸) Speedup 𝑇𝐶𝑃𝑈(≈ 𝑇𝐸) Speedup 𝑇𝐶𝑃𝑈 𝑇𝐸 𝑇𝐶𝑃𝑈 𝑇𝐸 𝑇𝐶𝑃𝑈 𝑇𝐸 

2 1000 39:21:13 07:53:47 00:23:48 𝟏𝟎𝟐.𝟎 𝟏𝟎𝟏.𝟑 00:26:52 𝟏𝟎𝟏.𝟗 𝟏𝟎𝟏.𝟐 

4 5000 
173:27:33 43:29:44 

00:25:05 𝟏𝟎𝟐.𝟔 𝟏𝟎𝟐.𝟎 00:27:00 𝟏𝟎𝟐.𝟔 𝟏𝟎𝟐.𝟎 

Table 4: Speedup in total CPU time and elapsed time of LBM-LES models relative to DNS in Nek5000. Times are presented 

in the format hrs:mins:sec. 

A comparison is also made to the computational cost of the NS-LES simulations of Pelmard et al.34, 

who used the structured non-staggered finite-volume code described by Norris73 and which has been 

applied to a wide range of problem types.74–76 Pelmard et al.34 ran simulations on a computing cluster 

at New-Zealand eScience Infrastructure (NeSI) consortium, consisting of nodes with two Intel Xeon 

E5-2680 Sandy Bridge 2.70 GHz CPUs, each with 8 cores. Pelmard et al.34 report the total CPU time 

required to run a turbulent lock-exchange gravity current simulation, with a standard Smagorinsky sub-

grid turbulence model, across a range of grid sizes. Simulations on the largest meshes were run across 

128 cores, while 64 cores were used for the smaller grids. Their results are taken to be representative of 

the typical cost associated with modern NS-LES codes. 
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The total CPU time required to simulate a unit of non-dimensional time (�̂� = �̃�( ℎ̃0)12 �̃�0⁄ =
𝑡(𝑔′ℎ0)12 𝑥0⁄ ) in RAFSINE, VirtualFluids, and the Pelmard et al.34 study is presented in Figure 14. 

Total CPU times for the LBM-LES models are presented for grid sizes of 𝑁𝑛𝑜𝑑𝑒𝑠 ∈{15, 37.5, 42.2}x106, as this represents the full range of grid sizes used in the present study. The 

comparison indicates that the LBM-GPU framework reduces total processing time by a factor of 

approximately 103, when contrasted with the representative total CPU time of the finite-volume NS-

LES framework. Assuming a speedup due to multi-core CPU parallelization similar to that achieved by 

Nek5000, it is anticipated that this would translate into a reduction in 𝑇𝐸 by a factor of approximately 102, when contrasted with the Pelmard et al.34 code running across 128 cores on the NeSI cluster. This 

conclusion is in agreement with the findings of a similar analysis conducted by King et al.77. 

Additionally, the LBM-GPU framework offers substantial performance advantages relative to the CPU 

implementation of Ottolenghi et al.43, which has enabled 3D simulations at higher Reynolds numbers. 

 

The results in Table 4 and Figure 14 show that both RAFSINE and VirtualFluids achieve similar 

speedups. The standard metric for comparing the performance of two LBM-GPU codes is the number 

of node updates per second, typically reported in the millions i.e., MNUPS. When running on an 

NVIDIA V100 GPU, RAFSINE and VirtualFluids report average update rates of 1307 MNUPS and 

1064 MNUPS respectively. RAFSINE has been robustly optimized by Delbosc et al.49 to run 

simulations in rectilinear domains, such as a lock-exchange channel. However, a direct comparison of 

the efficiency of the GPU implementations cannot be made since VirtualFluids uses two 𝐷3𝑄27 lattices  
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Figure 14: Total CPU time per unit of non-dimensional time �̂� in RAFSNIE, VirtualFluids and finite-volume LES simulations 

of Pelmard et al.34. 

 for the 𝑓𝑖𝑗𝑘 and Φ𝑖𝑗𝑘 distributions, which demands more memory resources and computations than the 𝐷3𝑄19 and 𝐷3𝑄6 lattices used by RAFSINE. Additionally, the cumulant collision kernel requires more 

computations per time step than the BGK collision kernel. The marginal performance gap could be 

narrowed by the integration of the cumulant and FCM kernels, as this would eliminate redundant 

memory accesses caused by reading and writing distribution functions to calculate the same 

macroscopic variables in each kernel. 

4. Conclusions 

In the present study, two LBM-LES models of lock-exchange gravity currents are validated against 

high resolution simulations and experiments, with regard to their ability to capture key qualitative and 

quantitative features of a lock-exchange gravity current flow across a wide range of Reynolds numbers. 

The two codes, RAFSINE and VirtualFluids, demonstrate equivalent accuracy to conventional NS-LES 

solvers in predictions of front velocity in the slumping, inertial, and viscous phases of the flow. 

Additionally, the VirtualFluids model achieved good agreement with DNS in the prediction of shear 

stress on the lower boundary. 
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The computational performance of the LBM-GPU framework was assessed relative to the 

computational cost of DNS run in Nek5000, and that reported for the finite-volume NS-LES simulations 

of Pelmard et al.34. It is demonstrated that the LBM-GPU framework delivers speedups of at least one 

order of magnitude in the elapsed real time of a simulation relative to DNS at low Reynolds numbers 

(𝑅𝑒 ≤ 5000), and speedups of three orders of magnitude in total CPU time relative to a NS-LES model 

across a range of grid sizes for a fully turbulent flow. 

 

Given the speed-up that can typically be achieved through multi-core CPU parallelization of CFD 

codes, it is estimated that the LBM-GPU models reduce the elapsed time required for a simulation by 

two orders of magnitude, whilst demonstrating equivalent accuracy. As a result, the numerical 

modelling framework presented herein can be used as a foundation for the development of models that 

capture more of the complexity of gravity currents, such as the two-way coupling between the 

hydrodynamics of environmental scale flows and the morphodynamics of boundaries in channels with 

complex geometries. This modelling objective would otherwise be too challenging to attempt due to 

the computational expense of conventional NS-LES codes. 
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Software Availability  

Software Name: RAFSINE 

Developer: Nicolas Delbosc, Damilola Adekanye, Amirul Khan 

Year first official release: 201449 

Hardware requirements: NVIDIA GPU with minimum compute capability 3.0 

System/Software requirements: CMake (minimum version 3.15), C++ compiler with C++14 support, 

minimum CUDA Version 9.0, Paraview 

Program language: C++, CUDA 

Availability: 

GitHub repository: https://github.com/scda-

FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exch

ange/RAFSINE 

Documentation: readme.md in GitHub repository 

 

Software Name: VirtualFluids 

Developer: Institute for Computational Modelling in Civil Engineering (iRMB) 

Year first official release: First GPU implementation in 200878,79 

Hardware requirements: NVIDIA GPU with minimum compute capability 3.0 

System/Software requirements: CMake (minimum version 3.15), C++ compiler with C++14 support, 

minimum CUDA Version 9.0, Paraview 

Program language: C++, CUDA 

Availability: 

GitLab repository: https://git.rz.tu-bs.de/irmb/virtualfluids 

Documentation: readme.md in GitHub repository 

 

Software Name: Nek5000-v19.0 

Developer: Argonne National Laboratory 

Year first official release: 2017  

Hardware requirements: See documentation at https://nek5000.mcs.anl.gov/ 

System/Software requirements: See documentation at https://nek5000.mcs.anl.gov/ 

Program language: FORTRAN 

Availability:  

GitHub repository: https://github.com/scda-

FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exch

ange/Nek5000 

Documentation: readme.md in GitHub repository 

  

https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/RAFSINE
https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/RAFSINE
https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/RAFSINE
https://git.rz.tu-bs.de/irmb/virtualfluids
https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/Nek5000
https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/Nek5000
https://github.com/scda-FluidsCDT/Saline_Gravity_Current_Models/tree/main/Straight_Channel_Single_Release_Lock_Exchange/Nek5000
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