2,926 research outputs found

    Study of the true performance limits of the Astrometric Multiplexing Area Scanner (AMAS)

    Get PDF
    The Astrometric Multiplexing Area Scanner (AMAS) is an instrument designed to perform photoelectric long focus astrometry of small fields. Modulation of a telescope focal plane with a rotating Ronchi ruling produces a frequency modulated signal from which relative positions and magnitudes can be extracted. Evaluation instrumental precision, accuracy and resolution characteristics with respect to a variety of instrumental and cosmical parameters indicates 1.5 micron precision and accuracy for single stars under specific conditions. This value decreases for increased number of field stars, particularly for fainter stars

    Apparatus for precision focussing and positioning of a beam waist on a target

    Get PDF
    The invention relates to optical focussing apparatus and, more particularly, to optical apparatus for focussing a highly collimated Gaussian beam which provides independent and fine control over the focus waist diameter, the focus position both along the beam axis and transverse to the beam, and the focus angle. A beam focussing and positioning apparatus provides focussing and positioning for the waist of a waisted beam at a desired location on a target such as an optical fiber. The apparatus includes a first lens, having a focal plane f sub 1, disposed in the path of an incoming beam and a second lens, having a focal plane f sub 2 and being spaced downstream from the first lens by a distance at least equal to f sub 1 + 10 f sub 2, which cooperates with the first lens to focus the waist of the beam on the target. A rotatable optical device, disposed upstream of the first lens, adjusts the angular orientation of the beam waist. The transverse position of the first lens relative to the axis of the beam is varied to control the transverse position of the beam waist relative to the target (a fiber optic as shown) while the relative axial positions of the lenses are varied to control the diameter of the beam waist and to control the axial position of the beam waist. Mechanical controllers C sub 1, C sub 2, C sub 3, C sub 4, and C sub 5 control the elements of the optical system. How seven adjustments can be made to correctly couple a laser beam into an optical fiber is illustrated. Prior art systems employing optical techniques to couple a laser beam into an optical fiber or other target simply do not provide the seven necessary adjustments. The closest known prior art, a Newport coupler, provides only two of the seven required adjustments

    Output optics for laser velocimeters

    Get PDF
    Space savings are effected in the optical output system of a laser velocimeter. The output system is comprised of pairs of optical fibers having output ends from which a beam of laser light emerges, a transfer lens for each light beam, and at least one final (LV) lens for receiving the light passing through the transfer lenses and for focussing that light at a common crossing point or area. In order to closely couple the transfer lenses to the final lens, each transfer lens is positioned relative to the final lens receiving light therefrom such that the output waist of the corresponding beam received by the final lens from the transfer lens is a virtual waist located before the transfer lens

    Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of δ\delta~Cephei

    Full text link
    We report new CHARA/MIRC interferometric observations of the Cepheid archetype δ\delta Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range ΔH\Delta H = 6.4, 5.8, and 5.2 mag, respectively within the relative distance to the Cepheid r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. Our observations did not show strong evidence of a companion. We have a marginal detection at 3σ3\sigma with a flux ratio of 0.21\%, but nothing convincing as we found other possible probable locations. We ruled out the presence of companion with a spectral type earlier than F0V, A1V and B9V, respectively for the previously cited ranges rr. From our estimated sensitivity limits and the Cepheid light curve, we derived lower-limit magnitudes in the HH band for this possible companion to be Hcomp>9.15,8.31H_\mathrm{comp} > 9.15, 8.31 and 7.77 mag, respectively for r<25r < 25 mas, 25<r<5025 < r < 50 mas and 50<r<10050 < r < 100 mas. We also found that to be consistent with the predicted orbital period, the companion has to be located at a projected separation <24< 24 mas with a spectral type later than a F0V star.Comment: Accepted for publication in MNRA

    First Results from the CHARA Array. II. A Description of the Instrument

    Full text link
    The CHARA Array is a six 1-m telescope optical/IR interferometric array located on Mount Wilson California, designed and built by the Center for High Angular Resolution Astronomy of Georgia State University. In this paper we describe the main elements of the Array hardware and software control systems as well as the data reduction methods currently being used. Our plans for upgrades in the near future are also described

    A Spectroscopic Orbit for Regulus

    Full text link
    We present a radial velocity study of the rapidly rotating B-star Regulus that indicates the star is a single-lined spectroscopic binary. The orbital period (40.11 d) and probable semimajor axis (0.35 AU) are large enough that the system is not interacting at present. However, the mass function suggests that the secondary has a low mass (M_2 > 0.30 M_sun), and we argue that the companion may be a white dwarf. Such a star would be the remnant of a former mass donor that was the source of the large spin angular momentum of Regulus itself.Comment: 18 pages, 2 figures, ApJL in pres

    Multiplicity of Galactic Cepheids from long-baseline interferometry I. CHARA/MIRC detection of the companion of V1334 Cygni

    Get PDF
    We aim at determining the masses of Cepheids in binary systems, as well as their geometric distances and the flux contribution of the companions. The combination of interferometry with spectroscopy will offer a unique and independent estimate of the Cepheid masses. Using long-baseline interferometry at visible and infrared wavelengths, it is possible to spatially resolve binary systems containing a Cepheid down to milliarcsecond separations. Based on the resulting visual orbit and radial velocities, we can then derive the fundamental parameters of these systems, particularly the masses of the components and the geometric distance. We therefore performed interferometric observations of the first-overtone mode Cepheid V1334 Cyg with the CHARA/MIRC combiner. We report the first detection of a Cepheid companion using long-baseline interferometry. We detect the signature of a companion orbiting V1334 Cyg at two epochs. We measure a flux ratio between the companion and the Cepheid f = 3.10+/-0.08%, giving an apparent magnitude mH = 8.47+/-0.15mag. The combination of interferometric and spectroscopic data have enabled the unique determination of the orbital elements: P = 1938.6+/-1.2 days, Tp = 2 443 616.1+/-7.3, a = 8.54+/-0.51mas, i = 124.7+/-1.8{\deg}, e = 0.190+/-0.013, {\omega} = 228.7+/-1.6{\deg}, and {\Omega} = 206.3+/-9.4{\deg}. We derive a minimal distance d ~ 691 pc, a minimum mass for both stars of 3.6 Msol, with a spectral type earlier than B5.5V for the companion star. Our measured flux ratio suggests that radial velocity detection of the companion using spectroscopy is within reach, and would provide an orbital parallax and model-free masses.Comment: Published in A&

    Improving the surface brightness-color relation for early-type stars using optical interferometry

    Full text link
    The aim of this work is to improve the SBC relation for early-type stars in the 1VK0-1 \leq V-K \leq 0 color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The derived uniform disk angular diameters were converted into limb darkened angular diameters and included in a larger sample of 24 stars, already observed by interferometry, in order to derive a revised empirical relation for O, B, A spectral type stars with a V-K color index ranging from -1 to 0. We also took the opportunity to check the consistency of the SBC relation up to VK4V-K \simeq 4 using 100 additional measurements. We determined the uniform disk angular diameter for the eight following stars: γ\gamma Ori, ζ\zeta Per, 88 Cyg, ι\iota Her, λ\lambda Aql, ζ\zeta Peg, γ\gamma Lyr, and δ\delta Cyg with V-K color ranging from -0.70 to 0.02 and typical precision of about 1.5%1.5\%. Using our total sample of 132 stars with VKV-K colors index ranging from about 1-1 to 44, we provide a revised SBC relation. For late-type stars (0VK40 \leq V-K \leq 4), the results are consistent with previous studies. For early-type stars (1VK0-1 \leq V-K \leq 0), our new VEGA/CHARA measurements combined with a careful selection of the stars (rejecting stars with environment or stars with a strong variability), allows us to reach an unprecedented precision of about 0.16 magnitude or 7%\simeq 7\% in terms of angular diameter.Comment: 13 pages, 5 figures, accepted for publication in A&

    First visual orbit for the prototypical colliding-wind binary WR 140

    Get PDF
    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec

    Angular Diameters and Effective Temperatures of Twenty-five K Giant Stars from the CHARA Array

    Full text link
    Using Georgia State University's CHARA Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and Hipparcos parallaxes produce physical linear radii for the sample. Except for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly-measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures
    corecore