230 research outputs found

    Does warfarin prevent venous thromboembolic events in aPL-positive patients?

    Get PDF
    Yes, warfarin is effective in the secondary prevention of venous thromboembolic events (VTEs) for patients positive for lupus anticoagulant or anticardiolipin antibody (also known as antiphospholipid antibodies [aPL]) (strength of recommendation [SOR]: B, single cohort study, extrapolation from other RCTs). Patients should be treated for at least a year (SOR: C, consensus statement), and possibly indefinitely, with warfarin (SOR: B, small clinical trials and cohort studies). Moderate-intensity therapy (international normalized ratio [INR] range, 2.0-3.0) appears to be the best balance between risks and benefits (SOR: B, based on meta-analysis of 2 small randomized control trials

    Data Presentation and Visualization (DPV) Interface Control Document

    Get PDF
    Data Presentation and Visualization (DPV) is a subset of the modeling and simulation (M&S) capabilities at Kennedy Space Center (KSC) that endeavors to address the challenges of how to present and share simulation output for analysts, stakeholders, decision makers, and other interested parties. DPV activities focus on the development and provision of visualization tools to meet the objectives identified above, as well as providing supporting tools and capabilities required to make its visualization products available and accessible across NASA

    Amyloid beta peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation

    Get PDF
    Background: Amyloid beta (A beta)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer\u27s disease (AD). A beta is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO). Method: In this study, we investigated A beta-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process. Results: Treatments of endothelial cells (EC) with A beta promoted the constitutive association of HSP90 with eNOS but abrogated agonist (vascular endothelial growth factor (VEGF))-mediated HSP90 interaction with Akt. This effect resulted in blockade of agonist-mediated phosphorylation of Akt and eNOS at serine 1179. Furthermore, A beta stimulated the production of reactive oxygen species in endothelial cells and concomitant treatments of the cells with the antioxidant N-acetyl-cysteine (NAC) prevented A beta effects in promoting HSP90/eNOS interaction and rescued agonist-mediated Akt and eNOS phosphorylation. Conclusions: The obtained data support the hypothesis that oxidative damage caused by A beta results in altered interaction of HSP90 with Akt and eNOS, therefore promoting vascular dysfunction. This mechanism, by contributing to A beta-mediated blockade of nitric oxide production, may significantly contribute to the cognitive impairment seen in AD patients

    Investigation of the neural control of cough and cough suppression in humans using functional brain imaging

    Get PDF
    Excessive coughing is one of the mostcommonreasons for seeking medical advice, yet the available therapies for treating cough disorders are inadequate. Humans can voluntarily cough, choose to suppress their cough, and are acutely aware of an irritation that is present in their airways. This indicates a significant level of behavioral and conscious control over the basic cough reflex pathway. However, very little is known about the neural basis for higher brain regulation of coughing. The aim of the present study was to use functional brain imaging in healthy humans to describe the supramedullary control of cough and cough suppression. Our data show that the brain circuitry activated during coughing in response to capsaicin-evoked airways irritation is not simply a function of voluntarily initiated coughing and the perception of airways irritation. Rather, activations in several brain regions, including the posterior insula and posterior cingulate cortex, define the unique attributes of an evoked cough. Furthermore, the active suppression of irritant-evoked coughing is also associated with a unique pattern of brain activity, including an involvement of the anterior insula, anterior mid-cingulate cortex, and inferior frontal gyrus. These data demonstrate for the first time that evoked cough is not solely a brainstem-mediated reflex response to irritation of the airways, but rather requires active facilitation by cortical regions, and is further regulated by distinct higher order inhibitory processes. Copyright © 2011 the authors

    Distributed Observer Network

    Get PDF
    The Distributed Observer network (DON) is a NASA-collaborative environment that leverages game technology to bring three-dimensional simulations to conventional desktop and laptop computers in order to allow teams of engineers working on design and operations, either individually or in groups, to view and collaborate on 3D representations of data generated by authoritative tools such as Delmia Envision, Pro/Engineer, or Maya. The DON takes models and telemetry from these sources and, using commercial game engine technology, displays the simulation results in a 3D visual environment. DON has been designed to enhance accessibility and user ability to observe and analyze visual simulations in real time. A variety of NASA mission segment simulations [Synergistic Engineering Environment (SEE) data, NASA Enterprise Visualization Analysis (NEVA) ground processing simulations, the DSS simulation for lunar operations, and the Johnson Space Center (JSC) TRICK tool for guidance, navigation, and control analysis] were experimented with. Desired functionalities, [i.e. Tivo-like functions, the capability to communicate textually or via Voice-over-Internet Protocol (VoIP) among team members, and the ability to write and save notes to be accessed later] were targeted. The resulting DON application was slated for early 2008 release to support simulation use for the Constellation Program and its teams. Those using the DON connect through a client that runs on their PC or Mac. This enables them to observe and analyze the simulation data as their schedule allows, and to review it as frequently as desired. DON team members can move freely within the virtual world. Preset camera points can be established, enabling team members to jump to specific views. This improves opportunities for shared analysis of options, design reviews, tests, operations, training, and evaluations, and improves prospects for verification of requirements, issues, and approaches among dispersed teams

    Ambulatory function in spinal muscular atrophy: Age-related patterns of progression

    Get PDF
    Individuals with spinal muscular atrophy (SMA) type 3 are able to walk but they have weakness, gait impairments and fatigue. Our primary study objective was to examine longitudinal changes in the six-minute walk test (6MWT) and to evaluate whether age and SMA type 3 subtype are associated with decline in ambulatory function. Data from three prospective natural history studies were used. Seventy-three participants who performed the 6MWT more than once, at least 6 months apart, were included; follow-up ranged from 0.5–9 years. Only data from patients who completed the 6MWT were included. The mean age of the participants was 13.5 years (range 2.6–49.1), with 52 having disease onset before age 3 years (type 3A). At baseline, type 3A participants walked a shorter distance on average (257.1 m) than type 3B participants (390.2 m) (difference = 133.1 m, 95% confidence interval [CI] 71.8–194.3, p < 0.001). Distance walked was weakly associated with age (r = 0.25, p = 0.04). Linear mixed effects models were used to estimate the mean annual rate of change. The overall mean rate of change was -7.8 m/year (95% CI -13.6 –-2.0, p = 0.009) and this did not differ by subtype (type 3A: -8.5 m/year, type 3B: -6.6 m/year, p = 0.78), but it did differ by age group (< 6: 9.8 m/year; 6–10: -7.9 m/year; 11–19: -20.8 m/year; ≥ 20: -9.7 m/year; p = 0.005). Our results showed an overall decline on the 6MWT over time, but different trajectories were observed depending on age. Young ambulant SMA patients gain function but in adolescence, patients lose function. Future clinical trials in ambulant SMA patients should consider in their design the different trajectories of ambulatory function over time, based on age

    A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation

    Get PDF
    Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral

    Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    Get PDF
    Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis.Hypomorphic apoE (Apoe(h/h)) mice expressing wildtype mouse apoE at ∼2-5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoe(h/h) allele in Apoe(h/h)LysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoe(h/h)LysM-Cre and Apoe(h/h) mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoe(h/h)LysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoe(h/h) mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoe(h/h)LysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoe(h/h)LysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoe(h/h) mice (167×10(3)±16×10(3) µm(2) versus 259×10(3)±56×10(3) µm(2), n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol.Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels
    corecore