443 research outputs found

    Stakeholder engagement in green place branding:a focus on user-generated content

    Get PDF
    The purpose of this research is to investigate how the green image of a city can affect potential visitors' attitude toward the city in the context of user‐generated content. The study adopts a 2 × 2 experimental design in which the greenness of the city image and the social distance between the users and the authors of social media content are examined. The results demonstrate that green image has a significant effect on attitudes toward cities. Moreover, the effects of social media content vary according to the perceived social distance between the author of the post and potential visitors. This study contributes to the literature by assessing the role that social media content plays in place branding and communication. Furthermore, it provides relevant insights on how institutions should enhance the sustainable resources of cities with their environmental policy and encourage the generation of content from various stakeholders to contribute to the development of a city's image

    Charge localization at the interface between La1-xSrxMnO3 and the infinite layers cuprate CaCuO2

    Full text link
    (CaCuO2)m/(La0.7Sr0.3MnO3)n superlattices, consisting of the infinite layers cuprate CaCuO2 and the optimally doped manganite La1-xSrxMnO3, were grown by pulsed laser deposition. The transport properties are dominated by the manganite block. X-Ray Absorption spectroscopy measurements show a clear evidence of an orbital reconstruction at the interface, ascribed to the hybridization between the Cu 3d3z2-r2 and the Mn 3d3z2-r2 orbitals via interface apical oxygen ions. Such a mechanism localizes holes at the interfaces, thus preventing charge transfer to the CaCuO2 block. Some charge (holes) transfer occurs toward the La0.7Sr0.3MnO3 block in strongly oxidized superlattices, contributing to the suppression of the magnetotransport properties.Comment: 20 pages, 6 figure

    The economic value of a climate service for water irrigation. A case study for Castiglione District, Emilia-Romagna, Italy

    Get PDF
    The use of climate services to support decision makers in incorporating climate change adaptation in their practices is well established and widely recognized. Their role is particularly relevant in a climate sensitive sector like agriculture where they can provide evidence for the adoption of transformative solutions from seasonal to multi-decadal time scales. Adaptation solutions are often expensive and irreversible in the short/medium run. Accordingly, end users should have a reliable reference to make decisions. Here, we propose and apply a methodology, co-developed with service developers and a representative potential user, to assess the value of the IRRICLIME climate service, whose information is used to support decisions on climate smart irrigation investment by water planners in a sub-irrigation district in Italy. We quantify the value of the information provided by the climate service, that we consider the intrinsic value of the service, or the value of adaptation. We demonstrate that under three different climate change scenarios, the maximum potential value of IRRICLIME could range between 2,985 €/ha and 7,480 €/ha

    Static Charge Density Wave Order in the Superconducting State of La2-xBaxCuO4

    Get PDF
    Charge density wave (CDW) correlations feature prominently in the phase diagram of the cuprates, motivating competing theories of whether fluctuating CDW correlations aid superconductivity or whether static CDW order coexists with superconductivity in inhomogeneous or spatially modulated states. Here we report Cu LL-edge resonant x-ray photon correlation spectroscopy (XPCS) measurements of CDW correlations in superconducting La2x_{2-x}Bax_xCuO4_4 x=0.11x=0.11. Static CDW order is shown to exist in the superconducting state at low temperatures and to persist up to at least 85\% of the CDW transition temperature. We discuss the implications of our observations for how \emph{nominally} competing order parameters can coexist in the cuprates.Comment: 6 pages, 5 figures, Accepted in Phys. Rev. B Rapid Communication

    Photon correlation spectroscopy with heterodyne mixing based on soft-x-ray magnetic circular dichroism

    Get PDF
    Many magnetic equilibrium states and phase transitions are characterized by fluctuations. Such magnetic fluctuation can in principle be detected with scattering-based x-ray photon correlation spectroscopy (XPCS). However, in the established approach of XPCS, the magnetic scattering signal is quadratic in the magnetic scattering cross section, which results not only in often prohibitively small signals but also in a fundamental inability to detect negative correlations (anticorrelations). Here, we propose to exploit the possibility of heterodyne mixing of the magnetic signal with static charge scattering to reconstruct the first-order (linear) magnetic correlation function. We show that the first-order magnetic scattering signal reconstructed from heterodyne scattering now directly represents the underlying magnetization texture. Moreover, we suggest a practical implementation based on an absorption mask rigidly connected to the sample, which not only produces a static charge scattering signal but also eliminates the problem of drift-induced artificial decay of the correlation functions. Our method thereby significantly broadens the range of scientific questions accessible by magnetic x-ray photon correlation spectroscopy

    The Magnetic Structure of DyMn2O5 Determined by Resonant X-ray Scattering

    Full text link
    Resonant magnetic x-ray scattering has been used to investigate the magnetic structure of the magnetoelectric multiferroic DyMn2O5. We have studied the magnetic structure in the ferroelectric phase of this material, which displays the strongest ferroelectric polarisation and magnetodielectric effect of the RMn2O5 (where R is a rare earth ion, Y or Bi) family. The magnetic structure observed is similar to that of the other members of the series, but differs in the direction of the ordered moments. In DyMn2O5 both the Dy and Mn moments lie close to the b-axis, whereas in other RMn2O5 they lie close to the a-axis.Comment: 8 pages, 8 figure

    Terrestrial gamma dose rate mapping (Euganean Hills, Italy): comparison between field measurements and HPGe gamma spectrometric data

    Get PDF
    Terrestrial gamma radiation is mostly due to radionuclides in soil and rocks, primarily the 238U, 235U and 232Th radioactive families and 40K. This radiation contributes 15% to public exposure from all ionizing radiation sources, considering global population. Moreover, it can be used to estimate radon flux and included as one of the quantities relevant to the geogenic radon hazard model. Therefore, effort has been put into developing maps of terrestrial gamma dose rate at the regional, national or European scale, using different input data and methods. In the present work, two distinct approaches to map terrestrial gamma dose rate have been tested in the Euganean Hills district of NE Italy. The first one is based on 41 in situ measurements of ambient dose equivalent rates using a rate meter equipped with a NaI scintillator probe. The second one estimates terrestrial gamma dose rate from the U, Th and K activity concentrations in rock samples collected at the same locations of the dose rates measurements. The results obtained indicate good agreement between the two approaches, and as such suggest that the UNSCEAR 2008 prescription to derive ambient dose equivalent rate from laboratory gamma measurements produces reliable data, provided that cosmic and fall-out contributions are included. Moreover, the study proved that mapping the ambient dose equivalent rate (or terrestrial gamma dose rate) using only one database – i.e. either measured data or estimates derived from radionuclide activity concentration – yields valid results
    corecore