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Abstract 

Rapid expansion of global market of lactic acid (LA) has prompted research towards cheaper and 

more eco-friendly strategies for its production. Nowadays, LA is produced mainly through 

fermentation of simple sugars or starchy biomass (e.g. corn) and its price is relatively high. 

Lignocellulose could be an advantageous alternative feedstock for LA production owing to its high 

abundance and low cost. However, the most effective natural producers of LA cannot directly 

ferment lignocellulose. So far, metabolic engineering aimed at developing microorganisms 

combining efficient LA production and cellulose hydrolysis has been generally based on 

introducing designer cellulase systems in natural LA producers. In the present study, the approach 

consisted in improving LA production in the natural cellulolytic bacterium Clostridium 

thermocellum DSM1313. The expression of the native lactate dehydrogenase was enhanced by 

functional replacement of its original promoter with stronger ones resulting in a 10-fold increase in 

specific activity, which resulted in a 2-fold increase of LA yield. It is known that eliminating 

allosteric regulation can also increase lactic acid production in C. thermocellum, however we were 

unable to insert strong promoters upstream of the de-regulated ldh gene. A strategy combining these 

regulations and inactivation of parasitic pathways appears essential for developing a homolactic C. 

thermocellum. 
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Abstract 

Rapid expansion of global market of lactic acid (LA) has prompted research towards cheaper and 

more eco-friendly strategies for its production. Nowadays, LA is produced mainly through 

fermentation of simple sugars or starchy biomass (e.g. corn) and its price is relatively high. 

Lignocellulose could be an advantageous alternative feedstock for LA production owing to its high 

abundance and low cost. However, the most effective natural producers of LA cannot directly 

ferment lignocellulose. So far, metabolic engineering aimed at developing microorganisms 

combining efficient LA production and cellulose hydrolysis has been generally based on 

introducing designer cellulase systems in natural LA producers. In the present study, the approach 

consisted in improving LA production in the natural cellulolytic bacterium Clostridium 

thermocellum DSM1313. The expression of the native lactate dehydrogenase was enhanced by 

functional replacement of its original promoter with stronger ones resulting in a 10-fold increase in 

specific activity, which resulted in a 2-fold increase of LA yield. It is known that eliminating 

allosteric regulation can also increase lactic acid production in C. thermocellum, however we were 

unable to insert strong promoters upstream of the de-regulated ldh gene. A strategy combining these 

regulations and inactivation of parasitic pathways appears essential for developing a homolactic C. 

thermocellum. 

 

Key words: metabolic engineering, anaerobic bacteria, ethanol, transcriptional promoter, 

lignocellulose 
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Introduction 1 

Lactic acid (LA) is among the most requested chemicals worldwide because of its broad range of 2 

industrial applications [1]. The latter include the use as food preservative and flavor enhancer, 3 

emulsifier and moisturizer in the cosmetic industry, precursor of pharmaceuticals and biodegradable 4 

solvents, and building block for the synthesis of plastic polymers, i.e., polylactide (PLA) and its co-5 

polymers [2]. PLAs are biodegradable and biocompatible plastics whose application encompasses 6 

several sectors including biomedicine (e.g. surgical thread, orthopedic implants, drug delivery), 7 

packaging of food and goods, manufacturing of agriculture mulch films and disposable tableware 8 

[2,3]. The potential of PLA to replace fossil-fuel-derived polymers as a general-purpose plastic has 9 

been among the main forces driving the current global market expansion of LA. The growth of 10 

global LA demand is currently estimated at 16.2% per year [2]. 11 

LA can be produced by either chemical synthesis from acetaldehyde or by microbial fermentation. 12 

However, most (about 90%) LA production plants worldwide are based on fermentation of starchy 13 

biomass (mainly corn) [2,4]. Biotechnological production of LA has many advantages over 14 

chemical synthesis such as lower energy consumption and environmental concerns and higher 15 

purity [2]. In particular, fermentative production can lead to optically pure L- or D-LA, while a 16 

racemic mixture of the two LA enantiomers is obtained by chemical synthesis [5]. It is worth 17 

remembering that a precise mixture of D- and L-LA is required for production of PLA with desired 18 

physical-chemical characteristics [5]. Yet, for economic reasons, industrial production of PLA is 19 

considered a relatively immature technology [4]. PLA is still too expensive to compete with fossil-20 

derived plastics and this is mainly due to the cost of LA. The current cost of LA is relatively high 21 

($1.30-4.0/kg) and suffers from significant variations of the price of starch or sugar feedstocks used 22 

for the fermentation process [6]. In fact, the cost of the feedstock is among the most relevant 23 

parameters determining the fermentation cost. This concern has stimulated research towards 24 

utilization of alternative feedstocks such as milk whey, food waste, glycerol, or microalgae [1,2,4]. 25 
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In particular, significant attention has been dedicated to lignocellulosic biomass owing to its high 26 

abundance and low cost. Lignocellulose includes most waste biomass such as agricultural/land by-27 

products (cereal straw, sugar cane bagasse, forest residues), municipal solid wastes and industrial 28 

wastes (e.g. paper mill sludge) [7]. However, the most efficient natural producers of LA, i.e. lactic 29 

acid bacteria (LAB), bacteria belonging to the Bacillus genus and fungi belonging to the Rhizopus 30 

genus, cannot ferment lignocellulosic material without prior biomass saccharification [8,9]. 31 

Biomass pre-treatment and, in particular, exogenous cellulase supplementation are highly expensive 32 

and significantly increase the cost of the entire process thus making it not-viable from an economic 33 

standpoint [10,11]. Development of consolidated bioprocessing (CBP), that is one-pot fermentation, 34 

of lignocellulose is therefore highly desirable, as a mean to significantly lower the cost of 35 

lignocellulose fermentation to LA and make PLA cost-competitive with oil-derived plastics. 36 

Recently, an example of CBP based on an artificial consortium consisting of a cellulolytic fungus 37 

(i.e. Trichoderma reesei) and a LAB (i.e. Lactobacillus pentosus) has been reported (Shahab et al., 38 

2018). However, industrial exploitation of this approach requires improved robustness, stability and 39 

reproducibility of co-cultures [12]. Metabolic engineering has been used to develop recombinant 40 

strains that combine high LA production and efficient biomass fermentation. Most studies have 41 

been aimed at introducing cellulolytic characteristics (e.g. by expression of heterologous cellulases) 42 

in natural LA producers, such as LAB [8]. In the present study, we used a different approach, i.e. 43 

we attempted to improve LA production in a native cellulolytic microorganism, namely Clostridium 44 

thermocellum. Metabolic engineering strategies addressed to native cellulolytic microorganisms 45 

have generally been focused on increasing biofuel, namely ethanol and butanol, production [13,14]. 46 

However, these studies have also indicated suitable metabolic targets for improving LA production 47 

[9]. 48 

Clostridium thermocellum DSM1313 is a thermophilic cellulolytic bacterium among the best 49 

cellulose degraders and the most promising candidates for application in CBP of plant biomass to 50 
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biofuels and other high-value chemicals. A significant amount of information on the central 51 

metabolism and, more in general, on the biology of C. thermocellum is currently available [15–17]. 52 

Furthermore, reliable methods for transformation, inducible gene expression and markerless gene 53 

deletion have been developed for this strain [18,19].Wild type C. thermocellum produces a mixture 54 

of organic acids (including acetic acid, formic acid and LA), ethanol, H2 and CO2. The main carbon 55 

catabolites are ethanol and acetate, while LA yield is very low (i.e. 0.01 mol/mol hexose equivalent) 56 

[20]. Improvement of the production of a chemical in a microorganism can be obtained through 57 

increased expression of enzyme(s) directly involved in its biosynthesis, and/or disruption of 58 

competing pathways [21]. Recently, dramatic increase in LA yield in C. thermocellum was obtained 59 

by deleting the autologous adhE gene, that encodes the main bifunctional alcohol/aldehyde 60 

dehydrogenase [20]. This modification almost abolished ethanol production in the engineered strain 61 

(i.e. strain LL1111) and significantly re-directed C. thermocellum carbon flux towards production 62 

of LA. Actually, LA is the main end-catabolite of LL1111 which is the C. thermocellum strain with 63 

the highest LA yield (40% of the maximum theoretical yield) obtained so far [20]. It is worth noting 64 

that LL1111 also features a spontaneously occurred mutation of its ldh gene resulting in a LDH 65 

whose activity is independent from allosteric activation by fructose 1,6 bisphosphate (F1,6BP) [20]. 66 

The strategy used in the present study aimed at enhancing the expression of native LDH by 67 

functionally replacing the original transcriptional promoter of the unique ldh gene (Clo1313_1160) 68 

[22] with stronger ones. Such modification has been performed on the “wild type” C. thermocellum 69 

(LL345) and on strains LL1147 [23] and LL1111 [20] that were recently engineered. Strain LL1147 70 

is repressed in H2 production because of functional inactivation of all four hydrogenases. Most 71 

attempts were successful and led to significant improvement (4.5-13 fold) of LDH activity and LA 72 

yield in the engineered strains. 73 

 74 

Materials and Methods 75 
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Bacterial strains and culture conditions 76 

All reagents used in this study were of molecular grade, and obtained either from Sigma Aldrich or 77 

Fisher Scientific, unless otherwise stated. C. thermocellum DSM1313 was obtained from the DSMZ 78 

culture collection. It was grown in either chemically defined MTC-5 medium at initial pH of 7.4 79 

[24] or in rich CTFUD medium at initial pH of 7.0 [18] supplemented with 5 g/l cellobiose as the 80 

main carbon source. Cultures were incubated at 55°C under anaerobic conditions either in conical 81 

tubes in anaerobic chambers (Coy Laboratory Products, Grass Lakes, MI, USA) or in 125 ml 82 

(containing 50 ml of medium) butyl stoppered vials. 83 

For measurement of growth parameters, strains were grown in a 96-well plate on in 200 μl of MTC-84 

5 medium and absorbance at 600 nm was determined every 3 min for 72 h in a Powerwave XS plate 85 

reader as previously described [25]. For measurement of fermentation products, strains were grown 86 

in CTFUD medium. Samples were harvested immediately after inoculation of the medium, and 87 

after 72 h of growth. Data for fermentation products and growth rate are averages from biological 88 

triplicate experiments. 89 

 90 

Analytical techniques 91 

Cellobiose, glucose, acetate, citrate, formate, ethanol, lactate, malate, pyruvate and succinate were 92 

measured by HPLC using an Aminex HPX-87H column (BioRad, CA, USA) equipped with both 93 

refractive index and UV detector as previously reported [26]. 94 

 95 

Gene modification 96 

Gene modification was performed in the genetically tractable Δhpt strain of C. thermocellum 97 

DSM1313 (referred as LL345) [22], and two strains derived from LL345 with additional deletion 98 
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of: i) hydG and ech genes (i.e. strain LL1147), encoding HydG, involved in maturation of the three 99 

[Fe-Fe] hydrogenases, and the [Ni-Fe] hydrogenase, respectively [23]; ii) adhE (i.e. strain LL1111) 100 

encoding the main aldehyde/alcohol dehydrogenase [20]. 101 

Gene modification consisted in insertion of the thiolase (thlA) promoter (PThl) of Clostridium 102 

acetobutylicum [27] or the promoter of Clo1313_2638 (P2638) of C. thermocellum DSM1313 [28] 103 

upstream (position 1,381,634 of C. thermocellum chromosome) of ldh gene (Clo1313_1160) of C. 104 

thermocellum. The inserted PThl sequence corresponded to nucleotide 2450 to 2612 of the shuttle 105 

vector pSOS95 (GenBank accession number: AY187686.1), while P2638 included nucleotide 106 

3,106,958 to 3,106,750 of C. thermocellum chromosome. Two gBlocks (Integrated DNA 107 

Technologies), one containing the 500 bp fragment upstream (5’ flank) of ldh gene and the other 108 

consisting of 500 bp upstream (5’ flank) of ldh gene, the promoter of choice and the first 500 bp of 109 

ldh gene (3’ flank), were designed (Supplementary Table S1). The gBlocks were cloned into the 110 

pDGO145 plasmid (GenBank accession number: KY852359) in the EcoRV and PvuII sites by 111 

Gibson assembly so as to obtain the plasmids for promoter integration into C. thermocellum 112 

chromosome [18]. The plasmids were transformed in T7 express chemiocompetent E. coli cells to 113 

ensure proper methylation [29]. Methylated plasmids were transformed into C. thermocellum by 114 

electroporation as described previously [18]. Integration of PThl and P2638 in the suited genome locus 115 

was obtained for C. thermocellum strain LL345 (thus resulting in strains LL1624 and LL1640, 116 

respectively) and LL1147 (thus resulting in strains LL1625 and LL1626, respectively) but not in 117 

strain LL1111. Genetic modifications were confirmed by whole-genome resequencing by the 118 

Department of Energy Joint Genome Institute. Raw genome resequencing data are available from 119 

the NCBI Sequence Read Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra). Data were 120 

analyzed with the CLC Genomic Workbench version 11.0.1, (Qiagen Inc., Hilden, Germany), as 121 

previously described [26]. Strains used in this study are listed in Table 1. 122 

 123 

http://www.ncbi.nlm.nih.gov/Traces/sra
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Enzyme assays 124 

Cells were grown in CTFUD medium to an optical density at 600 nm (OD600nm) of 0.6 and 125 

harvested by centrifugation (7,000 x g, 10 min, 4°C). Harvested cells were washed twice in 126 

anaerobic conditions with cold 100 mM Tris-HCl pH 7 (12,000 x g, 5 min) and stored at -80°C. 127 

Protein extracts were prepared by incubating cells with lysozyme as previously described [20]. 128 

Protein content was measured by Bio-Rad protein dye reagent with bovine serum albumin (Thermo 129 

Scientific) as the standard. Lactate dehydrogenase (LDH) activity assays were performed as 130 

previously described [20]. Briefly, assays were performed at 55°C in a Coy anaerobic chamber with 131 

an 85% N2, 10% CO2, and 5% H2 atmosphere maintained under anoxic conditions using a 132 

palladium catalyst. NADH consumption was monitored by measuring absorbance at 340 nm using 133 

an extinction coefficient of 6,220 M
-1

 cm
-1

. The reaction conditions for lactate dehydrogenase 134 

(LDH) activity were 200 mM Tris-HCl (pH 7.3), 0.22 mM NADH, 10 mM sodium pyruvate, and 1 135 

mM fructose 1,6-bisphosphate (F1,6BP). The reaction was started by addition of sodium pyruvate. 136 

 137 

Results 138 

Functional replacement of ldh promoter in C. thermocellum 139 

Plasmids for inserting the promoter (PThl) of thiolase gene (thlA) from C. acetobutylicum or of the 140 

promoter (P2638) of Clo1313_2638 of C. thermocellum DSM1313 upstream of the ldh gene 141 

(Clo1313_1160) of C. thermocellum DSM1313 were constructed and transformed in C. 142 

thermocellum strains LL345, LL1111 and LL1147. Both promoters are known for being strong and 143 

constitutive [27,28]. LL345 was obtained by disruption of the hpt gene in C. thermocellum 144 

DSM1313, but can considered as the wild-type strain from a metabolic standpoint, since the hpt 145 

gene was deleted to allow for 8AZH counter-selection, and it does not affect the fermentation 146 

phenotype [22]. LL1111 and LL1147 have been obtained from LL345 respectively by: i) deletion of 147 
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the gene encoding the main bifunctional alcohol/aldehyde dehydrogenase AdhE (Lo et al., 2015); ii) 148 

disruption of hydG, encoding maturase of the three [FeFe] hydrogenases, and ech, encoding the 149 

[NiFe] hydrogenase, resulting in a C. thermocellum strain that lacks hydrogenase activity (Biswas et 150 

al., 2015). In the present study, functional replacement of ldh promoter with PThl has been obtained 151 

in the C. thermocellum strains LL345 (wt) and LL1147 (hydrogenase knockout), resulting in strains 152 

LL1624 and LL1625, respectively. Insertion of P2638 in strains LL345 and LL1147 resulted in 153 

strains LL1640 and LL1626, respectively. Attempts to introduce PThl or P2638 upstream of the ldh 154 

gene in strain LL1111 (adhE deletion) were unsuccessful. Genome re-sequencing of all the 155 

engineered strains confirmed successful modification of the ldh locus in strains LL1624, LL1625, 156 

LL1626 and LL1640. 157 

 158 

LDH activity of engineered strains 159 

LDH activity in parent and engineered strains was measured (Figure 1). Furthermore, LDH assays 160 

were performed on strain LL1111 (adhE deletion) since it is the C. thermocellum strain with the 161 

highest LA production yield (40% of the maximum theoretical yield) obtained so far (Lo et al., 162 

2015). In three out of the four strains engineered in this study (i.e. LL1624, LL1626 and LL1640), 163 

specific LDH activity was significantly improved with respect to their parent strains by a factor 164 

ranging from 4.5 to 13-fold (Figure 1). This confirms that the promoters chosen were stronger than 165 

the original ldh promoter. With respect to their parent strain, namely LL345, strains LL1624 and 166 

LL1640 showed about 4.5-fold increased LDH specific activity, which suggests that PThl and P2638 167 

have similar strength. However, these promoters did not have the same effect in the LL1147 168 

(hydrogenase deletion) background. The highest LDH specific activity was measured in LL1626, 169 

that is LL147 with P2638, with an increase of more than 13-fold with respect to the parent strain 170 

LL1147. Unexpectedly, no enhancement of LDH activity was detected in LL1625 carrying the PThl 171 

in LL1147 genetic background (Figure 1).  172 
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 173 

Growth and fermentation profiles of engineered strains 174 

Overexpression of LDH had little effect on growth of recombinant C. thermocellum strains obtained 175 

in the present study (Table 2). Most frequently, a slight (ranging from 26 to 29%) reduction in the 176 

specific growth rate was observed, i.e. in strains LL1624 and LL1626, with respect to parent strains. 177 

An even weaker reduction (8-9 %) of final biomass was shown by strains LL1626 and LL1640 178 

(with respect to parent strain LL1147 (hydrogenase deletion) and LL345 (wt)). Although functional 179 

replacement of the ldh promoter did not increase LDH activity, strain LL1625 showed a 180 

significantly lower growth rate (17%) and slightly increased final biomass with respect to LL1147. 181 

Determination of substrate and fermentation product concentrations was performed immediately 182 

after inoculation, and then 72 hours later, after growth had stopped (Table 2). Cellobiose 183 

consumption was largely unchanged by the introduction of different promoters driving the ldh gene. 184 

In several cases, however, overexpression of ldh resulted in less glucose production (strains 185 

LL1624, LL1625, and LL1626).  186 

Apart from sugar consumption, also the profile of fermentation end-products of the engineered 187 

strains was affected. In strains where higher LDH activity was measured, also LA yield was 188 

improved although to a lower extent. In the wild type strain background (LL345), overexpression of 189 

LDH approximately doubled the LA yield (strains LL1624 and LL1640), consistent with enzyme 190 

assay data. In the hydrogenase deletion background (LL1147), overexpression of LDH had a 191 

variable effect on LA yield. The PThl promoter decreased LA yield (LL1625), while the P2638 192 

promoter increased (about 2-fold) LA yield (LL1626). Maximum LA yield obtained in this study 193 

(i.e. 0.8 mol/mol cellobiose, strain LL1640) is still dramatically lower than that of LL1111, i.e. the 194 

C. thermocellum strain with the highest LA yield obtained so far (Lo et al., 2015). Apart from 195 

disruption of adhE gene, in strain LL1111 a spontaneous mutation of the ldh gene appeared, 196 
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resulting in a mutant LDH having high catalytic activity even without its allosteric activator, 197 

namely F1,6BP [20].  198 

Overexpression of LDH induces other re-arrangements of the metabolic network of C. 199 

thermocellum, and the overall fermentation profile of the engineered strains is significantly different 200 

from that of the parent strains. Most frequently, improved LA yield is accompanied by increased 201 

ethanol yield (strains LL1624 and LL1626) and/or reduction of formate yield (strains LL1640 and 202 

LL1626) (Table 2). Interestingly, catabolite profiles of LL1624 and LL1640 differ from each other, 203 

although they show similar LDH activity and LA yield and both derive from LL345. LL1624 shows 204 

a significant reduction of acetate yield and an increase of ethanol and malate production. In 205 

LL1640, only formate yield resulted as significantly decreased with respect to LL345. Metabolite 206 

profiles of strains derived from LL1147 were more similar between each other. Both LL1625 and 207 

LL1626 showed decreased production of formate and malate and remarkable (more than 2-fold) 208 

increase in ethanol yield. It is worth noting that LL1626 has the highest LDH specific activity 209 

measured in this study and its LA yield is about 2-fold higher than that of LL1647, but LL1625 has 210 

LDH levels similar to the parent strains.  211 

 212 

Genome sequencing of engineered strains 213 

After strain construction, correct insertion of the promoter upstream of ldh, as well as the absence of 214 

point mutations in or upstream of the ldh gene was verified by whole genome resequencing. 215 

However, there were several unexpected results from the enzyme assay and fermentation data, so 216 

we looked to see if these results could be explained by any of the secondary mutations we observed. 217 

The LDH enzyme activity in strain LL1625 was no different from that of its parent strain, LL1147, 218 

despite the presence of the PThl promoter. We identified seven mutations that were present LL1625, 219 

but not in its parent strain (LL1147) (Figure 2). Of these mutations, the one starting at position 220 

279492 (coordinates based on Genbank sequence NC_017304.1) should be ignored because it is 221 
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present in both strains LL1625 and LL1626. Of the remaining six mutations, we do not have any 222 

direct evidence to favor one over another. There are two which deserve additional scrutiny. There is 223 

a point mutation in the Clo1313_1324 gene. This gene is thought to encode rpoD, which is the 224 

sigma factor associated with basal expression (i.e. "housekeeping" genes), and could affect 225 

transcription from the PThl promoter. There is also a mutation in the Clo1313_1122 start codon that 226 

changed it from an ATG to a GTG. This type of mutation is typically associated with reduced 227 

transcription. This is interesting because in LL1147, the parent strain of LL1625, this position was 228 

mutated from GTG to ATG, so in strain LL1625, the mutation reverted back to the wild type.  229 

Another unexplained phenotype is the increased ethanol production and decreased acetate 230 

production of strain LL1624 relative to either its parent (LL345) or sibling (LL640) strains. 231 

Although there are 17 potential mutations that are unique to strain LL1624, none of them are 232 

obviously associated with ethanol production, acetate production, or redox balance. 233 

 234 

Discussion 235 

Production of LA through a 2
nd

 generation biorefinery approach has attracted significant interest 236 

because of the economic advantages that using lignocellulose as the fermentation feedstock could 237 

bring on LA price [1,2]. The present study aimed at improving LA production in the native 238 

cellulolytic bacterium C. thermocellum by enhancing the expression of its LDH. The final purpose 239 

of this investigation is developing a strain able to catalyze direct fermentation of lignocellulose to 240 

LA. Development of such CBP could significantly reduce the current cost of LA. Most previous 241 

metabolic engineering strategies aimed at direct fermentation of lignocellulose to LA have 242 

attempted to introduce (hemi)cellulolytic characteristics in natural producers of LA [30,31]. The 243 

approach used in the present study focused on improving the expression of the native LDH of the 244 

cellulolytic bacterium C. thermocellum DSM1313 by functionally replacing its native promoter 245 
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with stronger ones. To this aim, two strong and constitutive promoters, i.e. the one of thiolase (PThl) 246 

from C. acetobutylicum [27] and that of Clo1313_2638 (P2638) from C. thermocellum DSM1313 247 

[28], were used. In three out of the four strains engineered in this study (i.e. LL1624, LL1626 and 248 

LL1640), functional replacement of the ldh promoter led to significant improvement of specific 249 

LDH activity with respect to parent strains by a factor ranging from 4.5 to 13-fold (Figure 1). These 250 

strains show the highest specific LDH activities reported in C. thermocellum, so far, that is about 4-251 

9 fold higher than that measured in strain LL1111 (i.e. the C. thermocellum strain with the highest 252 

LA yield reported so far). It is worth remembering that, in many microorganisms, LDH expression 253 

is under the control of the global redox-responsive transcription factor Rex [32]. Generally, Rex 254 

acts as a gene transcription repressor in response to low intracellular [NAD(P)H]/[NAD(P)+] ratio. 255 

Although this has not been confirmed in C. thermocellum yet, ldh promoter engineering obtained in 256 

this study may have altered this regulation. Recently, a similar approach was used to improve the 257 

expression of the ldh gene from Caldicellulosyruptor bescii [33]. In this case the original promoter 258 

was replaced with the xylose-inducible promoter Pxi but improvement of the specific LDH activity 259 

with respect to the wild type strain (about 3 fold) was lower than that obtained in the present study. 260 

However, the effect of ldh promoter replacement on LA production was milder since no more than 261 

2-fold increase of LA yield with respect to parent strains was observed. Maximum LA yield 262 

obtained in this study (i.e. 0.8 mol/mol cellobiose, strain LL1640) is still dramatically lower than 263 

that of strain LL1111 (Lo et al., 2015). Apart from disruption of adhE gene, in strain LL1111 a 264 

spontaneous mutation of the ldh gene appeared, resulting in a mutant LDH having high catalytic 265 

activity even without its allosteric activator, namely F1,6BP [20]. LA yield of strain LL1626 266 

(derived from the hydrogenase-deficient strain LL1147) was even lower despite this strain shows 267 

the highest LDH specific activity (Figure 1). This observation is most probably related to the 268 

different metabolic background of this strain. Strain LL1147 also shows dramatic reduction of LA 269 

accumulation [23]. The exact cause of this metabolic phenotype was not determined but it was 270 
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speculated that disruption of hydrogenases could have altered intracellular levels of possible 271 

allosteric regulators of LDH [23]. Apart from the abovementioned F1,6BP, the LDH enzymes may 272 

also be activated by ATP and inhibited by pyrophosphate, e.g. in Caldicellulosiruptor 273 

saccharolyticus [34]. Nicotinamide cofactors are other typical regulators of LDH activity such as in 274 

Caldicellulosiruptor saccharolyticus, where NAD
+
 is a competitive inhibitor [34], or in 275 

Thermoanaerobacter ethanolicus where, curiously, LDH is inhibited by NADPH [35]. It is likely 276 

that hydrogenase-deleted C. thermocellum features accumulation of reduced ferredoxin via PFOR 277 

which could cause accumulation of other reduced electron carriers such as NADPH possibly 278 

leading to inhibition of LDH [23]. 279 

The moderate increase of LA yield obtained by the present study was not completely unexpected. 280 

Overexpression of an enzyme, although it can significantly divert the metabolism towards the 281 

product of interest, as in this case, generally, is not sufficient for driving all the carbon flux towards 282 

the pathway of interest. More in detail, previous studies have demonstrated that lactate production 283 

in C. thermocellum is affected at multiple levels, i.e. by allosteric regulation and deletion of 284 

competing pathways [20]. The present study has identified a third factor: transcriptional regulation, 285 

since introducing stronger promoters upstream of the ldh gene increases both LDH enzyme activity 286 

and LA production. All these factors contribute to sophisticated regulation of LA production in C. 287 

thermocellum. A previous study has shown that the deletion of adhE likely have the largest impact 288 

on lactate production [20]. Allosteric control and transcriptional control appear to have similar 289 

strength based on similar LA yields of strains LL1624 or LL1640 compared to strain LL1160 290 

carrying only the S161R mutation in LDH [20]. 291 

Actually, current information on C. thermocellum metabolism still have important gaps as regards 292 

LA production. It is known that Km for pyruvate C. thermocellum LDH is highly affected by 293 

F1,6BP concentration [36], but regulation by further allosteric effectors (ATP, pyrophosphate, 294 

nicotinamide cofactors) has been hypothesized [23]. The affinity of the other C. thermocellum 295 
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enzymes that directly compete for the same substrates, that is pyruvate and/or NADH, is currently 296 

not known. Alternative reactions for dissimilation of pyruvate in C. thermocellum are catalyzed by 297 

pyruvate ferredoxin oxidoreductase (PFOR) (E.C. 1.2.7.1) and by pyruvate formate lyase (PFL) 298 

(E.C. 2.3.1.54). C. thermocellum genome harbors five genes or gene clusters annotated as encoding 299 

PFOR [37]. Some evidence indicates that pfor1 (Clo1313_0020-0023) and pfor4 (Clo1313_1353-300 

1356) are the primary PFOR of C. thermocellum [37–39]. Actually, deletion of each of these gene 301 

clusters causes about 80% reduction of PFOR activity in this strain [37]. However, the Km for 302 

pyruvate of these enzymes has not been determined. C. thermocellum PFL is encoded by pflB gene 303 

(Clo1313_1717) but its Km for pyruvate has not been measured. 304 

Overexpression of LDH induces other, sometimes unexpected, re-arrangements of the metabolic 305 

network and the overall fermentation profile of C. thermocellum. In two (strains LL1624 and 306 

LL1626) out of three strains with increased LA yield, also ethanol yield was enhanced and/or 307 

formate yield was diminished (strains LL1640 and LL1626) (Table 2). Additionally, strain LL1624 308 

shows a significant reduction of acetate yield. It is worth remembering that acetate, formate and 309 

ethanol biosynthesis compete with LA production. Inhibition of formate and acetate in LA 310 

overproducing strains was therefore expected. However, improvement of ethanol yield in strains 311 

LL1624 and LL1626 was surprising since ethanol production competes with LA synthesis for both 312 

carbon intermediates and electrons. However, a number of observations made by previous and 313 

present study may explain the beneficial effect of improvement of LDH activity on fermentation 314 

efficiency and, in particular, ethanol production in C. thermocellum. Most probably enhancement of 315 

LDH activity affects the redox balance of the cells and, in particular, lowers the NADH/NAD
+
 ratio, 316 

which should be particularly high in strain LL1147, since it lacks hydrogenases. High 317 

NADH/NAD
+
 ratios have been shown to inhibit the GAPDH reaction [40,41] and reduce the 318 

glycolytic flux in C. thermocellum [42]. Improvement of LDH activity should benefit glycolytic 319 

flux because it consumes both NADH and pyruvate (as demonstrated by the fact that strain LL1626 320 
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does not show any pyruvate accumulation while its parent strain LL1147 does, Table 2). Regarding 321 

improvement of ethanol yield in strains LL1624 and LL1626, it is worth reminding that, recently, 322 

the activity of one of the main PFOR of C. thermocellum (i.e. PFOR1) was shown to be inhibited by 323 

NADH accumulation [43]. Furthermore, thermodynamic analysis indicated that while pyruvate 324 

dissimilation through LDH or PFL reactions is favorable even in presence of high concentrations of 325 

lactate or formate, respectively, the PFOR reaction becomes less favorable in highly reduced 326 

conditions [44]. So, it can be speculated that improved LDH activity helps removing possible 327 

inhibition of PFOR deriving from excess of reduced co-factors, and eventually this may lead to 328 

improved conversion of acetyl-CoA to ethanol. 329 

Future perspectives to improve pyruvate flux towards LA in C. thermocellum should aim at 330 

improving LDH affinity for pyruvate by either: i) re-introducing the S161R mutation of C. 331 

thermocellum LDH as found in strain LL1111 (adhE deletion) or; replacing C. thermocellum 332 

original LDH with heterologous thermophilic LDH with higher affinity for pyruvate. As regards the 333 

first strategy, i.e. introducing a strong promoter upstream of the mutant ldh from LL1111, attempts 334 

to create this strain failed so far. Future attempts to create such a strain would benefit from 335 

improved genetic tools, such as tightly repressed inducible promoters. A possible candidate for the 336 

second strategy is LDH from Thermus caldophilus which shows a Km for pyruvate which is 10-fold 337 

lower than that of C. thermocellum LDH [45]. 338 
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 517 

Table 1. C. thermocellum strains used in this study. 518 

 519 

 520 

1 Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra 521 

 522 

 523 

Strain Description SRA accession1 Reference 

LL345 DSM 1313 Δhpt SRX872655 [22] 

LL1111 LL345 ΔadhE ldh(S161R) SRX744221 [20] 

LL1147 LL345 ∆hydG ∆ech SRX2141488 [23] 

LL1624 LL345 PThl-ldh SRX5676996 This study 

LL1625 LL1147 PThl-ldh SRX5678334 This study 

LL1626 LL1147 P2638-ldh SRX5678333 This study 

LL1640 LL345 P2638-ldh SRX6875981 This study 

https://www.ncbi.nlm.nih.gov/sra
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Table 2. Growth and fermentation profiles of the C. thermocellum strains. The data are the mean of three biological replicates ± standard deviation. 524 

Light red and light green indicate values which are significantly (p < 0.05) lower and higher than data observed in the parent strain, respectively. 525 

n.d., not detected. 526 

 527 

Strain 

Name LL345 LL1624 LL1640 LL1111 LL1147 LL1625 LL1626 

Parent strain LL345 LL1111 LL1147 

ldh promoter WT PThl P2638 WT WT PThl P2638 

  growth rate (h-1) 0.5 ± 0.0 0.3 ± 0.0 0.4 ± 0.0 0.3 ± 0.1 0.4 ± 0.0 0.4 ± 0.0 0.3 ± 0.0 

  final OD600nm 1.6 ± 0.0 1.4 ± 0.0 1.4 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 1.4± 0.0 1.2 ± 0.0 

Fe
rm

e
n

ta
ti

o
n

 p
ro

fi
le

 

Initial cellobiose (mM) 27.6 ± 0.4 27.0 ± 0.3 27.4 ± 0.5 27.0 ± 0.4 26.9 ± 0.3 26.7 ± 0.3 27.1 ± 0.1 

Consumed cellobiose (mM) 21.1 ± 0.4 21.4 ± 0.1 21.6 ± 0.5 17.8 ± 0.5 18.9 ± 0.3 19.6 ± 0.4 19.8 ± 0.2 

residual cellobiose (mM) 6.5 ± 0.3 5.6 ± 0.2 5.8 ± 0.2 9.2 ± 0.8 8.0 ± 0.1 7.1 ± 0.4 7.2 ± 0.3 

glucose (mM) 15.8 ± 1.1 14.6 ± 0.1 17.6 ± 0.6 18.3 ± 1.5 14.3 ± 0.6 10.3 ± 0.7 9.0 ± 0.5 

Residual hexose equivalent % 52.1 ± 1.2 47.7 ± 0.2 53.3 ± 2.1 67.8 ± 5.0 56.5 ± 1.4 45.9 ± 2.1 43.3 ± 1.6 

acetate (mM) 15.4 ± 1.5 9.1 ± 0.4 16.9 ± 2.4 8.6 ± 0.9 4.3 ± 0.4 4.1 ± 0.2 4.3 ± 0.0 
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ethanol (mM) 7.6 ± 2.1 14.7 ± 0.2 5.8 ± 2.9 n.d. 8.5 ± 1.7 27.0 ± 1.8 29.7 ± 0.8 

formate (mM) 5.2 ± 0.2 4.6 ± 0.9 1.3 ± 0.2 0.1 ± 0.0 15.9 ± 0.0 14.2 ± 0.3 12.0 ± 0.3 

lactate (mM) 4.8 ± 0.2 11.1 ± 1.6 10.8 ± 0.4 21.5 ± 1.1 1.9 ± 0.2 0.6 ± 0.0 5.4 ± 0.6 

malate (mM) 1.6 ± 0.2 2.3 ± 0.2 3.1 ± 0.6 2.3 ± 0.3 1.0 ± 0.1 0.9 ± 0.0 0.5 ± 0.0 

pyruvate (mM) 0.1 ± 0.2 n.d. n.d. n.d. 1.8 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 

succinate (mM) -0.2 ± 0.0 -0.3 ± 0.0 -0.3 ± 0.0 -0.3 ± 0.1 0.0 ± 0.0 0.0 ± 0.1 -0.2 ± 0.0 

Yacetate (mol/mol cellobiose consumed) 1.2 ± 0.1 0.6 ± 0.0 1.3 ± 0.3 1.0 ± 0.2 0.4 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 

Yethanol (mol/mol cellobiose consumed) 0.6 ± 0.2 1.0 ± 0.0 0.4 ± 0.2 n.d. 0.7 ± 0.1 1.9 ± 0.1 1.9 ± 0.0 

Yformate (mol/mol cellobiose consumed) 0.4 ± 0.0 0.3 ± 0.1 0.1 ± 0.0 0.0 ± 0.0 1.4 ± 0.1 1.0 ± 0.0 0.8 ± 0.0 

Ylactate (mol/mol cellobiose consumed) 0.4 ± 0.0 0.8 ± 0.1 0.8 ± 0.1 2.5 ± 0.5 0.2 ± 0.0 0.0 ± 0.0 0.4 ± 0.0 

Ymalate (mol/mol cellobiose consumed) 0.1 ± 0.0 0.2 ± 0.0 0.2 ± 0.1 0.3 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 

Ypyruvate (mol/mol cellobiose consumed) 0.0 ± 0.0 0 n.d. n.d. 0.2 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

Ysuccinate (mol/mol cellobiose consumed) -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 -0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

 528 

 529 
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 530 

Figure legends 531 

Figure 1. Lactate dehydrogenase (LDH) specific activity measured in the acellular crude extracts of 532 

C. thermocellum strains and LA yields (YLA) determined in the same strains. The data are the mean 533 

of three biological replicates ± standard deviation (for YLA, standard deviation is in parentheses). 534 

The * and ** labels indicate values that are significantly different (p < 0.05) from those observed in 535 

the corresponding parent strain. *, p = 0.007; ** p = 0.0003 536 

 537 

Figure 2. Mutations found through genome sequencing of the C. thermocellum strains engineered in 538 

this study 539 

 540 
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Figure 2 

     Read fraction2 

Start 
Region1 

Description Type Annotation name Annotation description 

LL
1

6
2

4
 

LL
1

6
4

0
 

LL
1

6
2

5
 

LL
1

6
2

6
 

4279 A --> - Deletion 130 bp upstream of 
Clo1313_0005 

cce:Ccel_0005 hypothetical protein 
0,0 1,0 0,0 0,0 

200106 A --> -, Ile127fs Deletion Clo1313_0185 phosphoribosyltransferase 0,0 1,0 0,0 0,0 

279492 G --> - Deletion no CDS match 
 

0,0 0,0 1,0 1,0 

477437 C --> T, Leu38Phe SNV Clo1313_0422 ATP phosphoribosyltransferase catalytic region 1,0 0,0 0,0 0,0 

494751 A --> -, Ile79fs Deletion Clo1313_0439 Sulfate transporter/antisigma-factor antagonist STAS 0,0 1,0 0,0 0,0 

523339 A --> -, Lys28fs Deletion Clo1313_0478 type III restriction protein res subunit 0,0 0,0 0,0 0,0 

618489 G --> A SNV 288 bp upstream of 
Clo1313_0559 

act:ACLA_088240 heat shock Hsp30-like protein, putative 
1,0 0,0 0,0 0,0 

677241 T --> C SNV no CDS match 
 

0,4 0,0 0,0 0,0 

677241 T --> T SNV no CDS match 
 

0,6 0,0 0,0 0,0 

724743 A --> G, Ile71Thr SNV Clo1313_0638 histone family protein DNA-binding protein 1,0 0,0 0,0 0,0 

754780 ATTTAGTA --> - Deletion 93 bp upstream of Clo1313_0663 dae:Dtox_2165 hypothetical protein 0,0 0,0 0,0 1,0 

1058282 A --> -, Lys43fs Deletion Clo1313_0908 phosphoribosyltransferase 1,0 0,0 0,0 0,0 

1193090 G --> T, Trp221Cys SNV Clo1313_1020 leucyl-tRNA synthetase 1,0 0,0 0,0 0,0 

1198434 C --> T SNV Clo1313_1021 PKD domain containing protein 0,4 0,0 0,0 0,0 

1198434 C --> C SNV Clo1313_1021 PKD domain containing protein 0,6 0,0 0,0 0,0 

1232526 G --> T, Glu114* SNV Clo1313_1035 tRNA/rRNA methyltransferase (SpoU) 1,0 0,0 0,0 0,0 

1271372 IS120 Insertion no CDS match 
 

0,0 1,0 0,0 0,0 

1341055 A --> G SNV 97 bp upstream of Clo1313_1122 metal-dependent phosphohydrolase HD sub domain 0,0 0,0 1,0 0,0 

1370265 G --> A SNV 45 bp upstream of Clo1313_1152 VanW family protein 1,0 0,0 0,0 0,0 

1381635 P2638 Insertion ldh Lactate/malate dehydrogenase 0,0 1,0 0,0 1,0 

1381635 PThl Insertion ldh Lactate/malate dehydrogenase 1,0 0,0 1,0 0,0 

1438373 ISCth10 Insertion 89 bp upstream of Clo1313_1211 aspartate/glutamate/uridylate kinase 0,0 0,0 0,0 0,0 

1570061 C --> A, Ala230Asp SNV Clo1313_1324 sigma-70 region 3 domain protein 0,0 0,0 1,0 0,0 

1719993 T --> C, Val125Ala SNV Clo1313_1467 aminotransferase class I and II 0,0 0,0 1,0 0,0 

Figure 2



1932207 IS120 Insertion no CDS match 
 

0,0 1,0 0,0 0,0 

2314895 C --> T, Met85Ile SNV Clo1313_1970 Rhomboid family protein 1,0 0,0 0,0 0,0 

2343123 - --> TATA Insertion 14 bp upstream of Clo1313_1989 VTC domain 0,0 0,0 0,0 0,9 

2624673 A --> T SNV no CDS match 
 

1,0 0,0 0,0 0,0 

2941043 C --> C SNV no CDS match 
 

0,6 0,0 0,0 0,0 

2941043 C --> T SNV no CDS match 
 

0,4 0,0 0,0 0,0 

2964040 G --> G SNV no CDS match 
 

0,5 0,6 0,0 0,0 

2988982 G --> A, Ala104Val SNV Clo1313_2549 peptidase S41 1,0 0,0 0,0 0,0 

3001017 ISCth10 Insertion Clo1313_2560 Carbamoyl-phosphate synthase L chain ATP-binding 0,0 0,0 1,0 0,0 

3132643 C --> T SNV Clo1313_2666 rca:Rcas_1719 hypothetical protein 1,0 1,0 0,0 0,0 

3151076 A --> C SNV 132 bp upstream of 
Clo1313_2686 

transposase IS200-family protein 
0,0 0,0 0,0 0,5 

3151076 A --> A SNV 132 bp upstream of 
Clo1313_2686 

transposase IS200-family protein 
0,0 0,0 0,0 0,5 

3301521 G --> T, 
Phe253Leu 

SNV Clo1313_2809 cpy:Cphy_2889 hypothetical protein 
0,0 0,0 1,0 0,0 

3359106 C --> T, Gly358Glu SNV Clo1313_2858 Carbohydrate binding family 6 0,0 1,0 0,0 0,0 

 

1 Start region is based on the coordinates from the C. thermocellum genome, Genbank accession number NC_017304.1 

2 Read fraction indicates the fraction of reads which support the presence of a given mutation. Read fractions > 0.95 indicate a mutation was called with high 

confidence. Lower read fraction values can result from a variety of causes, including duplicated genome regions, low read counts, and sequencing instrument 

noise. 
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Supplementary Table S1. Sequence of the gBlocks used to construct plasmids for functional replacement of the ldh promoter with the promoter of 

the thiolase (thlA) (PThl, gBlock XD904) of Clostridium acetobutylicum or the promoter of Clo1313_2638 (P2638, gBlock XD902) of C. 

thermocellum DSM1313. Underlined sequences correspond to the sequence of the promoters. 

 

gBlock 
name 
(lenght) 

Purpose Sequence (5’-3’) 

XD901 
(540 bp)  

5’ flank 
 

TAGGCGTATCACGAGGCGATCTTTTTCCCCAAAACTTCCGCAACAGTCTCCTTTGTAAGGTCATCCTGCGTGGGGCCGAGTCCTCCGGTCATAATAAC
AAGGTCGCACCTTTCCAAAGCTGCAAGAAGACATTTTTTCAGCCGAACGGAATTGTCCCCCACCACACTGTGATAATACACATTCACACCAATGTCAT
TGAGCCTTTTGGATATATACTGGGCATTGGTATTTGCTATCTGCCCCATTAAAAGCTCGGTTCCAACCGCTAATATCTCCGCATTCATATTGAAAGACC
CCTTAAATTTAAACTTTTTGTAACTTATTATATCAATTAGTGTTATAAAATAAAAGGGAAAAAGAATTAAAATCAAAGGTTTCAAGAGCAGCCGTATC
ACCCGTAAAAGTTTCAGCCGATTCAACCTTTTTACACATAAAACTTTCAAAAATTGATGACTTACAATTATCAAGTAGGATATAATATTACTAATGCTA
AACAGTTATTGATAAAGGAGGAAGGAATATCGTGGGAATAGGCATGGA 

XD902 
(1249 bp) 
 

insertion of 
promoter 
P2638 
 

TACCTGGCCCAGTAGTTCAGCTTTTTCCCCAAAACTTCCGCAACAGTCTCCTTTGTAAGGTCATCCTGCGTGGGGCCGAGTCCTCCGGTCATAATAAC
AAGGTCGCACCTTTCCAAAGCTGCAAGAAGACATTTTTTCAGCCGAACGGAATTGTCCCCCACCACACTGTGATAATACACATTCACACCAATGTCAT
TGAGCCTTTTGGATATATACTGGGCATTGGTATTTGCTATCTGCCCCATTAAAAGCTCGGTTCCAACCGCTAATATCTCCGCATTCATATTGAAAGACC
CCTTAAATTTAAACTTTTTGTAACTTATTATATCAATTAGTGTTATAAAATAAAAGGGAAAAAGAATTAAAATCAAAGGTTTCAAGAGCAGCCGTATC
ACCCGTAAAAGTTTCAGCCGATTCAACCTTTTTACACATAAAACTTTCAAAAATTGATGACTTACAATTATCAAGTAGGATATAATATTACTAATGCTA
AACAGTTATTGATAAAGGAGGAAGGAATGATAAACAAAGGACGGTTCAGGGCTTCTGCTCATCCTACTCTGCATTGTAAAAAGGTAGGATGAATTTT
TATTTTTAATCTTATTGAAAAAAATTTTTGAAAATCGGTTTTATTAAAAAAAAGTGGGTATATTTATAATAGTCAATTGATTGGTTAAAAAAATTTAAA
TAAGCAAACAGAATAATAACAAAAGTAAGGAGGAATTTGTTATGAACAATAACAAAGTAATTAAAAAAGTAACCGTAGTTGGTGCAGGCTTTGTAG
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GTTCCACCACAGCTTATACATTGATGCTCAGCGGACTTATATCTGAAATTGTACTGATAGACATAAATGCAAAAAAAGCCGACGGAGAAGTCATGGA
CTTAAATCACGGCATGCCTTTTGTAAGGCCCGTTGAAATTTATCGTGGTGACTACAAAGACTGTGCCGGATCCGACATAGTAATCATTACCGCCGGTG
CCAACCAAAAAGAAGGCGAAACGAGAATAGATCTTGTTAAAAGAAACACGGAAGTATTCAAAAATATCATAAATGAAATTGTAAAGTACAACAACG
ATTGTATTCTTCTGGTAGTCACAAATCCGGTGGATATTTTAACCTATGTAACTTACAAACTATCCGGATTCCCGAAAAACAAAGTAATAGGTTCCGGA
ACGGTTTTGGACACAGCCAGGTTCCGTTATCTTTTAAGCGAACATGTAAAAGTGGACTGCTAATAGTAGTGAAAAA 

XD904 
(1203 bp)  
 

insertion of 
promoter PThl 

TACCTGGCCCAGTAGTTCAGCTTTTTCCCCAAAACTTCCGCAACAGTCTCCTTTGTAAGGTCATCCTGCGTGGGGCCGAGTCCTCCGGTCATAATAAC
AAGGTCGCACCTTTCCAAAGCTGCAAGAAGACATTTTTTCAGCCGAACGGAATTGTCCCCCACCACACTGTGATAATACACATTCACACCAATGTCAT
TGAGCCTTTTGGATATATACTGGGCATTGGTATTTGCTATCTGCCCCATTAAAAGCTCGGTTCCAACCGCTAATATCTCCGCATTCATATTGAAAGACC
CCTTAAATTTAAACTTTTTGTAACTTATTATATCAATTAGTGTTATAAAATAAAAGGGAAAAAGAATTAAAATCAAAGGTTTCAAGAGCAGCCGTATC
ACCCGTAAAAGTTTCAGCCGATTCAACCTTTTTACACATAAAACTTTCAAAAATTGATGACTTACAATTATCAAGTAGGATATAATATTACTAATGCTA
AACAGTTATTGATAAAGGAGGAAGGAATTCGACTTTTTAACAAAATATATTGATAAAAATAATAATAGTGGGTATAATTAAGTTGTTAGAGAAAACG
TATAAATTAGGGATAAACTATGGAACTTATGAAATAGATTGAAATGGTTTATCTGTTACCCCGTAGGATCCAGAATTTAAAAGGAGGGATTAAAATG
AACAATAACAAAGTAATTAAAAAAGTAACCGTAGTTGGTGCAGGCTTTGTAGGTTCCACCACAGCTTATACATTGATGCTCAGCGGACTTATATCTGA
AATTGTACTGATAGACATAAATGCAAAAAAAGCCGACGGAGAAGTCATGGACTTAAATCACGGCATGCCTTTTGTAAGGCCCGTTGAAATTTATCGT
GGTGACTACAAAGACTGTGCCGGATCCGACATAGTAATCATTACCGCCGGTGCCAACCAAAAAGAAGGCGAAACGAGAATAGATCTTGTTAAAAGA
AACACGGAAGTATTCAAAAATATCATAAATGAAATTGTAAAGTACAACAACGATTGTATTCTTCTGGTAGTCACAAATCCGGTGGATATTTTAACCTA
TGTAACTTACAAACTATCCGGATTCCCGAAAAACAAAGTAATAGGTTCCGGAACGGTTTTGGACACAGCCAGGTTCCGTTATCTTTTAAGCGAACATG
TAAAAGTGGACTGCTAATAGTAGTGAAAAA 

 


