59 research outputs found

    IKK-i/IKKϵ Controls Constitutive, Cancer Cell-associated NF-κB Activity via Regulation of Ser-536 p65/RelA Phosphorylation

    Get PDF
    Nuclear factor kappaB (NF-kappaB) has been studied extensively as an inducible transcriptional regulator of the immune and inflammatory response. NF-kappaB activation downstream of lipopolysaccharide or cytokine stimulation is controlled by the IkappaB kinase complex, which contains IKKalpha and IKKbeta. Significantly, the constitutive activity of NF-kappaB has been implicated as an important aspect of many cancer cells, but mechanisms associated with this activity are poorly understood. An inducible kinase, IKK-i/IKKepsilon, related to the catalytic forms of the IkappaB kinase, has been studied as an anti-viral, innate immune regulator through its ability to control the activity of the transcription factors IRF-3 and IRF-7. Here, we demonstrate that IKK-i/IKKepsilon is expressed in a number of cancer cells and is involved in regulating NF-kappaB activity through its ability to control basal/constitutive, but not cytokine-induced, p65/RelA phosphorylation at Ser-536, a modification proposed to contribute to the transactivation function of NF-kappaB. Knockdown of IKK-i/IKKepsilon or expression of a S536A mutant form of p65 suppresses HeLa cell proliferation. The data indicate a role for IKK-i/IKKepsilon in controlling proliferation of certain cancer cells through regulation of constitutive NF-kappaB activity

    IKKα and IKKβ Each Function to Regulate NF-κB Activation in the TNF-Induced/Canonical Pathway

    Get PDF
    Activation of the transcription factor NF-kappaB by cytokines is rapid, mediated through the activation of the IKK complex with subsequent phosphorylation and degradation of the inhibitory IkappaB proteins. The IKK complex is comprised of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory protein known as NEMO. Using cells from mice that are genetically deficient in IKKbeta or IKKalpha, or using a kinase inactive mutant of IKKbeta, it has been proposed that IKKbeta is critical for TNF-induced IkappaB phosphorylation/degradation through the canonical pathway while IKKalpha has been shown to be involved in the non-canonical pathway for NF-kappaB activation. These conclusions have led to a focus on development of IKKbeta inhibitors for potential use in inflammatory disorders and cancer.Analysis of NF-kappaB activation in response to TNF in MEFs reveals that IKKbeta is essential for efficient phosphorylation and subsequent degradation of IkappaB alpha, yet IKKalpha contributes to the NF-kappaB activation response in these cells as measured via DNA binding assays. In HeLa cells, both IKKalpha and IKKbeta contribute to IkappaB alpha phosphorylation and NF-kappaB activation. A kinase inactive mutant of IKKbeta, which has been used as evidence for the critical importance of IKKbeta in TNF-induced signaling, blocks activation of NF-kappaB induced by IKKalpha, even in cells that are deficient in IKKbeta.These results demonstrate the importance of IKKalpha in canonical NF-kappaB activation, downstream of cytokine treatment of cells. The experiments suggest that IKKalpha will be a therapeutic target in inflammatory disorders

    Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9.

    Get PDF
    Imaging chromatin dynamics is crucial to understand genome organization and its role in transcriptional regulation. Recently, the RNA-guidable feature of CRISPR-Cas9 has been utilized for imaging of chromatin within live cells. However, these methods are mostly applicable to highly repetitive regions, whereas imaging regions with low or no repeats remains as a challenge. To address this challenge, we design single-guide RNAs (sgRNAs) integrated with up to 16 MS2 binding motifs to enable robust fluorescent signal amplification. These engineered sgRNAs enable multicolour labelling of low-repeat-containing regions using a single sgRNA and of non-repetitive regions with as few as four unique sgRNAs. We achieve tracking of native chromatin loci throughout the cell cycle and determine differential positioning of transcriptionally active and inactive regions in the nucleus. These results demonstrate the feasibility of our approach to monitor the position and dynamics of both repetitive and non-repetitive genomic regions in live cells

    A functional variant on 20q13.33 related to glioma risk alters enhancer activity and modulates expression of multiple genes.

    Get PDF
    Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) associated with glioma risk on 20q13.33, but the biological mechanisms underlying this association are unknown. We tested the hypothesis that a functional SNP on 20q13.33 impacted the activity of an enhancer, leading to an altered expression of nearby genes. To identify candidate functional SNPs, we identified all SNPs in linkage disequilibrium with the risk-associated SNP rs2297440 that mapped to putative enhancers. Putative enhancers containing candidate functional SNPs were tested for allele-specific effects in luciferase enhancer activity assays against glioblastoma multiforme (GBM) cell lines. An enhancer containing SNP rs3761124 exhibited allele-specific effects on activity. Deletion of this enhancer by CRISPR-Cas9 editing in GBM cell lines correlated with an altered expression of multiple genes, including STMN3, RTEL1, RTEL1-TNFRSF6B, GMEB2, and SRMS. Expression quantitative trait loci (eQTL) analyses using nondiseased brain samples, isocitrate dehydrogenase 1 (IDH1) wild-type glioma, and neurodevelopmental tissues showed STMN3 to be a consistent significant eQTL with rs3761124. RTEL1 and GMEB2 were also significant eQTLs in the context of early CNS development and/or in IDH1 wild-type glioma. We provide evidence that rs3761124 is a functional variant on 20q13.33 related to glioma/GBM risk that modulates the expression of STMN3 and potentially other genes across diverse cellular contexts

    Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy

    Get PDF
    The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors

    Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo

    Get PDF
    Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10-30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesisclos
    corecore