16 research outputs found

    Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis.

    Get PDF
    The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity

    Budding Yeast SSD1-V Regulates Transcript Levels of Many Longevity Genes and Extends Chronological Life Span in Purified Quiescent Cells

    No full text
    Ssd1 is an RNA-binding protein that affects literally hundreds of different processes and is polymorphic in both wild and lab yeast strains. We have used transcript microarrays to compare mRNA levels in an isogenic pair of mutant (ssd1-d) and wild-type (SSD1-V) cells across the cell cycle. We find that 15% of transcripts are differentially expressed, but there is no correlation with those mRNAs bound by Ssd1. About 20% of cell cycle regulated transcripts are affected, and most show sharper amplitudes of oscillation in SSD1-V cells. Many transcripts whose gene products influence longevity are also affected, the largest class of which is involved in translation. Ribosomal protein mRNAs are globally down-regulated by SSD1-V. SSD1-V has been shown to increase replicative life span¤ and we show that SSD1-V also dramatically increases chronological life span (CLS). Using a new assay of CLS in pure populations of quiescent prototrophs, we find that the CLS for SSD1-V cells is twice that of ssd1-d cells
    corecore