74 research outputs found

    Meso-Scale Approximations of Fields Around Clusters of Defects

    Get PDF

    Multiplication and Composition in Weighted Modulation Spaces

    Full text link
    We study the existence of the product of two weighted modulation spaces. For this purpose we discuss two different strategies. The more simple one allows transparent proofs in various situations. However, our second method allows a closer look onto associated norm inequalities under restrictions in the Fourier image. This will give us the opportunity to treat the boundedness of composition operators.Comment: 49 page

    Multiscale methods for the solution of the Helmholtz and Laplace equations

    Get PDF
    This paper presents some numerical results about applications of multiscale techniques to boundary integral equations. The numerical schemes developed here are to some extent based on the results of the papers [6]—[10]. Section 2 deals with a short description of the theory of generalized Petrov-Galerkin methods for elliptic periodic pseudodifferential equations in Rn\mathbb{R}^n covering classical Galerkin schemes, collocation, and other methods. A general setting of multiresolution analysis generated by periodized scaling functions as well as a general stability and convergence theory for such a framework is outlined. The key to the stability analysis is a local principle due to one of the authors. Its applicability relies here on a sufficiently general version of a so-called discrete commutator property of wavelet bases (see [6]). These results establish important prerequisites for developing and analysing methods for the fast solution of the resulting linear systems (Section 2.4). The crucial fact which is exploited by these methods is that the stiffness matrices relative to an appropriate wavelet basis can be approximated well by a sparse matrix while the solution to the perturbed problem still exhibits the same asymptotic accuracy as the solution to the full discrete problem. It can be shown (see [7]) that the amount of the overall computational work which is needed to realize a required accuracy is of the order O(N(log⁥N)b)\mathcal{O}(N(\log N)^b), where NN is the number of unknowns and b≄0b \geq 0 is some real number

    Second-order L2L^2-regularity in nonlinear elliptic problems

    Get PDF
    A second-order regularity theory is developed for solutions to a class of quasilinear elliptic equations in divergence form, including the pp-Laplace equation, with merely square-integrable right-hand side. Our results amount to the existence and square integrability of the weak derivatives of the nonlinear expression of the gradient under the divergence operator. This provides a nonlinear counterpart of the classical L2L^2-coercivity theory for linear problems, which is missing in the existing literature. Both local and global estimates are established. The latter apply to solutions to either Dirichlet or Neumann boundary value problems. Minimal regularity on the boundary of the domain is required. If the domain is convex, no regularity of its boundary is needed at all

    Sobolev spaces on non-Lipschitz subsets of Rn with application to boundary integral equations on fractal screens

    Get PDF
    We study properties of the classical fractional Sobolev spaces on non-Lipschitz subsets of Rn. We investigate the extent to which the properties of these spaces, and the relations between them, that hold in the well-studied case of a Lipschitz open set, generalise to non-Lipschitz cases. Our motivation is to develop the functional analytic framework in which to formulate and analyse integral equations on non-Lipschitz sets. In particular we consider an application to boundary integral equations for wave scattering by planar screens that are non-Lipschitz, including cases where the screen is fractal or has fractal boundary

    Riesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces

    Get PDF
    We prove optimal integrability results for solutions of the p(x)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L1 to variable exponent weak Lebesgue spaces

    A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains

    Full text link
    In the first (and abstract) part of this survey we prove the unitary equivalence of the inverse of the Krein--von Neumann extension (on the orthogonal complement of its kernel) of a densely defined, closed, strictly positive operator, S≄ΔIHS\geq \varepsilon I_{\mathcal{H}} for some Δ>0\varepsilon >0 in a Hilbert space H\mathcal{H} to an abstract buckling problem operator. This establishes the Krein extension as a natural object in elasticity theory (in analogy to the Friedrichs extension, which found natural applications in quantum mechanics, elasticity, etc.). In the second, and principal part of this survey, we study spectral properties for HK,ΩH_{K,\Omega}, the Krein--von Neumann extension of the perturbed Laplacian −Δ+V-\Delta+V (in short, the perturbed Krein Laplacian) defined on C0∞(Ω)C^\infty_0(\Omega), where VV is measurable, bounded and nonnegative, in a bounded open set Ω⊂Rn\Omega\subset\mathbb{R}^n belonging to a class of nonsmooth domains which contains all convex domains, along with all domains of class C1,rC^{1,r}, r>1/2r>1/2.Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144
    • 

    corecore