90 research outputs found

    Synergizing expectation and execution for stroke communities of practice innovations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regional networks have been recognized as an interesting model to support interdisciplinary and inter-organizational interactions that lead to meaningful care improvements. Existing communities of practice within the a regional network, the Montreal Stroke Network (MSN) offers a compelling structure to better manage the exponential growth of knowledge and to support care providers to better manage the complex cases they must deal with in their practices. This research project proposes to examine internal and external factors that influence individual and organisational readiness to adopt national stroke best practices and to assess the impact of an e-collaborative platform in facilitating knowledge translation activities.</p> <p>Methods</p> <p>We will develop an e-collaborative platform that will include various social networking and collaborative tools. We propose to create online brainstorming sessions ('jams') around each best practice recommendation. Jam postings will be analysed to identify emergent themes. Syntheses of these analyses will be provided to members to help them identify priority areas for practice change. Discussions will be moderated by clinical leaders, whose role will be to accelerate crystallizing of ideas around 'how to' implement selected best practices. All clinicians (~200) involved in stroke care among the MSN will be asked to participate. Activities during face-to-face meetings and on the e-collaborative platform will be documented. Content analysis of all activities will be performed using an observation grid that will use as outcome indicators key elements of communities of practice and of the knowledge creation cycle developed by Nonaka. Semi-structured interviews will be conducted among users of the e-collaborative platform to collect information on variables of the knowledge-to-action framework. All participants will be asked to complete three questionnaires: the typology questionnaire, which classifies individuals into one of four mutually exclusive categories of information seeking; the e-health state of readiness, which covers ten domains of the readiness to change; and a community of practice evaluation survey.</p> <p>Summary</p> <p>This project is expected to enhance our understanding of collaborative work across disciplines and organisations in accelerating implementation of best practices along the continuum of care, and how e-technologies influence access, sharing, creation, and application of knowledge.</p

    Siesta: Recent developments and applications

    Get PDF
    A review of the present status, recent enhancements, and applicability of the SIESTA program is presented. Since its debut in the mid-1990s, SIESTA’s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of SIESTA combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a realspace grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin–orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as WANNIER90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering SIESTA runs, and various post-processing utilities. SIESTA has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments. Published under license by AIP Publishing.Siesta development was historically supported by different Spanish National Plan projects (Project Nos. MEC-DGES-PB95-0202, MCyT-BFM2000-1312, MEC-BFM2003-03372, FIS2006-12117, FIS2009-12721, FIS2012-37549, FIS2015-64886-P, and RTC-2016-5681-7), the latter one together with Simune Atomistics Ltd. We are thankful for financial support from the Spanish Ministry of Science, Innovation and Universities through Grant No. PGC2018-096955-B. We acknowledge the Severo Ochoa Center of Excellence Program [Grant Nos. SEV-2015-0496 (ICMAB) and SEV-2017-0706 (ICN2)], the GenCat (Grant No. 2017SGR1506), and the European Union MaX Center of Excellence (EU-H2020 Grant No. 824143). P.G.-F. acknowledges support from Ramón y Cajal (Grant No. RyC-2013-12515). J.I.C. acknowledges Grant No. RTI2018-097895-B-C41. R.C. acknowledges the European Union’s Horizon 2020 Research and Innovation Program under Marie Skłodoswka-Curie Grant Agreement No. 665919. D.S.P, P.K., and P.B. acknowledge Grant No. MAT2016-78293-C6, FET-Open No. 863098, and UPV-EHU Grant No. IT1246-19. V. W. Yu was supported by a MolSSI Fellowship (U.S. NSF Award No. 1547580), and V.B. and V.W.Y. were supported by the ELSI Development by the NSF (Award No. 1450280). We also acknowledge Honghui Shang and Xinming Qin for giving us access to the honpas code, where a preliminary version of the hybrid functional support described here was implemented. We are indebted to other contributors to the Siesta project whose names can be seen in the Docs/Contributors.txt file of the Siesta distribution, and we thank those, too many to list, contributing fixes, comments, clarifications, and documentation for the code.Peer reviewe

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    A pair of Sub-Neptunes transiting the bright K-dwarf TOI-1064 characterised with CHEOPS

    Get PDF
    Funding: TGW, ACC, and KH acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant ST/R003203/1.We report the discovery and characterization of a pair of sub-Neptunes transiting the bright K-dwarf TOI-1064 (TIC 79748331), initially detected in the Transiting Exoplanet Survey Satellite (TESS) photometry. To characterize the system, we performed and retrieved the CHaracterising ExOPlanets Satellite (CHEOPS), TESS, and ground-based photometry, the High Accuracy Radial velocity Planet Searcher (HARPS) high-resolution spectroscopy, and Gemini speckle imaging. We characterize the host star and determine Teff,⋆=4734±67K⁠, R⋆=0.726±0.007R⊙⁠, and M⋆=0.748±0.032M⊙⁠. We present a novel detrending method based on point spread function shape-change modelling and demonstrate its suitability to correct flux variations in CHEOPS data. We confirm the planetary nature of both bodies and find that TOI-1064 b has an orbital period of Pb = 6.44387 ± 0.00003 d, a radius of Rb = 2.59 ± 0.04 R⊕, and a mass of Mb=13.5+1.7−1.8 M⊕, whilst TOI-1064 c has an orbital period of Pc=12.22657+0.00005−0.00004 d, a radius of Rc = 2.65 ± 0.04 R⊕, and a 3σ upper mass limit of 8.5 M⊕. From the high-precision photometry we obtain radius uncertainties of ∼1.6 per cent, allowing us to conduct internal structure and atmospheric escape modelling. TOI-1064 b is one of the densest, well-characterized sub-Neptunes, with a tenuous atmosphere that can be explained by the loss of a primordial envelope following migration through the protoplanetary disc. It is likely that TOI-1064 c has an extended atmosphere due to the tentative low density, however further radial velocities are needed to confirm this scenario and the similar radii, different masses nature of this system. The high-precision data and modelling of TOI-1064 b are important for planets in this region of mass–radius space, and it allow us to identify a trend in bulk density–stellar metallicity for massive sub-Neptunes that may hint at the formation of this population of planets.Publisher PDFPeer reviewe

    Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma

    Get PDF
    SummaryWe describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers
    corecore