262 research outputs found

    The representation of solar cycle signals in stratospheric ozone – Part 1: A comparison of satellite observations

    Get PDF
    Changes in incoming solar ultraviolet radiation over the 11-year solar cycle affect stratospheric ozone abundances. It is important to quantify the magnitude, structure, and seasonality of the associated solar-ozone response (SOR) to understand the impact of the 11-year solar cycle on climate. Part 1 of this two-part study uses multiple linear regression analysis to extract the SOR in a number of recently updated satellite ozone datasets covering different periods within the epoch 1970 to 2013. The annual mean SOR in the updated version 7.0 (v7.0) Stratospheric Aerosol and Gas Experiment (SAGE) II number density dataset (1984–2004) is very consistent with that found in the previous v6.2. In contrast, we find a substantial decrease in the magnitude of the SOR in the tropical upper stratosphere in the SAGE II v7.0 mixing ratio dataset (∼ 1 %) compared to the v6.2 (∼ 4 %). This difference is shown to be largely attributable to the change in the independent stratospheric temperature dataset used to convert SAGE II ozone number densities to mixing ratios. Since these temperature records contain substantial uncertainties, we suggest that datasets based on SAGE II number densities are currently most reliable for evaluating the SOR. We further analyse three extended ozone datasets that combine SAGE II v7.0 number densities with more recent GOMOS (Global Ozone Monitoring by Occultation of Stars) or OSIRIS (Optical Spectrograph and Infrared Imager System) measurements. The extended SAGE–OSIRIS dataset (1984–2013) shows a smaller and less statistically significant SOR across much of the tropical upper stratosphere compared to the SAGE II data alone. In contrast, the two SAGE–GOMOS datasets (1984–2011) show SORs that are in closer agreement with the original SAGE II data and therefore appear to provide a more reliable estimate of the SOR. We also analyse the SOR in the recent Solar Backscatter Ultraviolet Instrument (SBUV) Merged Ozone Dataset (SBUVMOD) version 8.6 (VN8.6) (1970–2012) and SBUV Merged Cohesive VN8.6 (1978–2012) datasets and compare them to the previous SBUVMOD VN8.0 (1970–2009). Over their full lengths, the three records generally agree in terms of the broad magnitude and structure of the annual mean SOR. The main difference is that SBUVMOD VN8.6 shows a smaller and less significant SOR in the tropical upper stratosphere and therefore more closely resembles the SAGE II v7.0 mixing ratio data than does the SBUV Merged Cohesive VN8.6, which has a more continuous SOR of ∼ 2 % in this region. The sparse spatial and temporal sampling of limb satellite instruments prohibits the extraction of sub-annual variations in the SOR from SAGE-based datasets. However, the SBUVMOD VN8.6 dataset suggests substantial month-to-month variations in the SOR, particularly in the winter extratropics, which may be important for the proposed high-latitude dynamical response to the solar cycle. Overall, the results highlight substantial uncertainties in the magnitude and structure of the observed SOR from different satellite records. The implications of these uncertainties for understanding and modelling the effects of solar variability on climate should be explored

    Processing The Interspecies Quorum-Sensing Signal Autoinducer-2 (AI-2) Characterization Of Phospho-(S)-4,5-Dihydroxy-2,3-Pentanedione Isomerization By LsrG Protein

    Get PDF
    The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is the precursor of the signal molecule autoinducer-2 (AI-2). AI-2 mediates interspecies communication and facilitates regulation of bacterial behaviors such as biofilm formation and virulence. A variety of bacterial species have the ability to sequester and process the AI-2 present in their environment, thereby interfering with the cell-cell communication of other bacteria. This process involves the AI-2-regulated lsr operon, comprised of the Lsr transport system that facilitates uptake of the signal, a kinase that phosphorylates the signal to phospho-DPD (P-DPD), and enzymes (like LsrG) that are responsible for processing the phosphorylated signal. Because P-DPD is the intracellular inducer of the lsr operon, enzymes involved in P-DPD processing impact the levels of Lsr expression. Here we show that LsrG catalyzes isomerization of P-DPD into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present the crystal structure of LsrG, identify potential catalytic residues, and determine which of these residues affects P-DPD processing in vivo and in vitro. We also show that an lsrG deletion mutant accumulates at least 10 times more P-DPD than wild type cells. Consistent with this result, we find that the lsrG mutant has increased expression of the lsr operon and an altered profile of AI-2 accumulation and removal. Understanding of the biochemical mechanisms employed by bacteria to quench signaling of other species can be of great utility in the development of therapies to control bacterial behavior

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design

    Valorisation of Potato (Solanum tuberosum) Peel Waste: Extraction of Fibre, Monosaccharides and Uronic Acids

    No full text
    Purpose: The food and starch industries generate large quantities of potato peel waste (PPW) that can be exploited for a range of biotechnological and biofuel applications. The purpose of this study was to characterise the ultrastructure and monosaccharide composition of PPW. Methods: The ultrastructure of PPW was observed using light and immunofluorescence microscopy. Fibre was prepared from PPW using mild detergent and subjected to sequential acid hydrolysis followed by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Results: Potato peels are composed of small, stacked cells which generally lack starch granules. These cells are surrounded by thick cell walls rich in pectic polysaccharides. Following sequential extraction, seven different sugars and two uronic acids were identified including (in order of abundance) mannose, galacturonic acid, xylose, glucose, fucose, glucuronic acid, galactose, rhamnose and arabinose. The monosaccharides and uronic acid products showed good stability in the acidic conditions during storage, which would facilitate their downstream purification and eventual commercialisation. Conclusion: PPW is a readily available source of fibre, monosaccharides and uronic acids

    The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nanotechnology has the potential to provide agriculture with new tools that may be used in the rapid detection and molecular treatment of diseases and enhancement of plant ability to absorb nutrients, among others. Data on nanoparticle toxicity in plants is largely heterogeneous with a diversity of physicochemical parameters reported, which difficult generalizations. Here a cell biology approach was used to evaluate the impact of Quantum Dots (QDs) nanocrystals on plant cells, including their effect on cell growth, cell viability, oxidative stress and ROS accumulation, besides their cytomobility.</p> <p>Results</p> <p>A plant cell suspension culture of <it>Medicago sativa </it>was settled for the assessment of the impact of the addition of mercaptopropanoic acid coated CdSe/ZnS QDs. Cell growth was significantly reduced when 100 mM of mercaptopropanoic acid -QDs was added during the exponential growth phase, with less than 50% of the cells viable 72 hours after mercaptopropanoic acid -QDs addition. They were up taken by <it>Medicago sativa </it>cells and accumulated in the cytoplasm and nucleus as revealed by optical thin confocal imaging. As part of the cellular response to internalization, <it>Medicago sativa </it>cells were found to increase the production of Reactive Oxygen Species (ROS) in a dose and time dependent manner. Using the fluorescent dye H<sub>2</sub>DCFDA it was observable that mercaptopropanoic acid-QDs concentrations between 5-180 nM led to a progressive and linear increase of ROS accumulation.</p> <p>Conclusions</p> <p>Our results showed that the extent of mercaptopropanoic acid coated CdSe/ZnS QDs cytotoxicity in plant cells is dependent upon a number of factors including QDs properties, dose and the environmental conditions of administration and that, for <it>Medicago sativa </it>cells, a safe range of 1-5 nM should not be exceeded for biological applications.</p

    Estimating logged-over lowland rainforest aboveground biomass in Sabah, Malaysia using airborne LiDAR data

    Get PDF
    Unprecedented deforestation and forest degradation in recent decades have severely depleted the carbon storage in Borneo. Estimating aboveground biomass (AGB) with high accuracy is crucial to quantifying carbon stocks for Reducing Emissions from Deforestation and Forest Degradation-plus implementation (REDD+). Airborne Light Detection and Ranging (LiDAR) is a promising remote sensing technology that provides fine-scale forest structure variability data. This paper highlights the use of airborne LiDAR data for estimating the AGB of a logged-over tropical forest in Sabah, Malaysia. The LiDAR data was acquired using an Optech Orion C200 sensor onboard a fixed wing aircraft. The canopy height of each LiDAR point was calculated from the height difference between the first returns and the Digital Terrain Model (DTM) constructed from the ground points. Among the obtained LiDAR height metrics, the mean canopy height produced the strongest relationship with the observed AGB. This single-variable model had a root mean squared error (RMSE) of 80.02 t ha-1 or 22.31% of the mean AGB, which performed exceptionally when compared with recent tropical rainforest studies. Overall, airborne LiDAR did provide fine-scale canopy height measurements for accurately and reliably estimating the AGB in a logged-over forest in Sabah, thus supporting the state's effort in realizing the REDD+ mechanism

    Marginalization of end-use technologies in energy innovation for climate protection

    Get PDF
    Mitigating climate change requires directed innovation efforts to develop and deploy energy technologies. Innovation activities are directed towards the outcome of climate protection by public institutions, policies and resources that in turn shape market behaviour. We analyse diverse indicators of activity throughout the innovation system to assess these efforts. We find efficient end-use technologies contribute large potential emission reductions and provide higher social returns on investment than energy-supply technologies. Yet public institutions, policies and financial resources pervasively privilege energy-supply technologies. Directed innovation efforts are strikingly misaligned with the needs of an emissions-constrained world. Significantly greater effort is needed to develop the full potential of efficient end-use technologies
    corecore