7 research outputs found

    Experimental study of flow through compressor Cascade

    Get PDF
    This article is open-access under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. First published by Elsevier via http://dx.doi.org/10.1016/j.csite.2017.05.002 © 2017.The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160mm, chord length was 80mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300mm, span was 160mm, pitch was 60mm, the actual chord of the cascade was 80mm, the axial chord of the cascade was 70mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°

    Biopolymers as potential carrier for effervescent reaction based drug delivery system in gastrointestinal condition

    No full text
    Biopolymers are naturally occurring materials formed in nature during the life cycles of organisms. Biopolymers include the polysaccharides, carbohydrates and protein such as cellulose, starch, wool, silk, gelatine and collagen. In recent years, biopolymer-based hydrogels become important area of research in pharmaceutical aspects because of their promising properties in drug delivery system. These properties include low toxicity, biodegradability, stability and renewable nature. Numerous studies have been carried out in order to develop carrier from biopolymers with better controlled release properties. This is important to ensure precisely desired concentration of drug or essential nutrient absorption into the blood or tissue could be achieved. Among other different approaches, floating system is one of the most convenient, economical, and effective drug delivery system. Floating delivery system could potentially achieve longer retention time of carrier with capsulated bioactive drug or functional nutrients in the gastrointestinal tract. The floating behaviour of carrier could be induced by effervescent reactions. Effervescent reaction occurs between acidic gastric content and pore forming agent such as carbonates or bicarbonates salts incorporated into the carrier. This chapter discusses some of the use of biopolymers in drug delivery systems for effervescent reaction in gastrointestinal tract
    corecore