9 research outputs found

    Cerium Binding Activity of Pectins Isolated from the Seagrasses Zostera marina and Phyllospadix iwatensis

    Get PDF
    Cerium binding activity of three different water soluble pectin compounds of different origin was studied in a batch sorption system. The Langmuir, Freundlich and BET sorption models were adopted to describe the binding reactions between metal ions and pectin molecules. The Langmuir model provided the best fit. Within the pH range from 4.0 to 6.0, the largest amount of the cerium ions was bound by pectin isolated from the seagrass Phylospadix iwatensis in comparison to pectin extracted from the seagrass Zostera marina and pectin obtained from citrus peel (commercial grade). The Langmuir constants were also highest for the pectin samples isolated from the seagrass P. iwatensis. The results obtained from this study suggest that pectin is a prospective source for the development of radioisotope-removing pharmaceuticals

    Carrageenans as a New Source of Drugs with Metal Binding Properties

    Get PDF
    Carrageenans are abundant and safe non-starch polysaccharides exerting their biological effects in living organisms. Apart from their known pro-inflammation properties and some pharmacological activity, carrageenans can also strongly bind and hold metal ions. This property can be used for creation of the new drugs for elimination of metals from the body or targeted delivery of these metal ions for healing purposes. Metal binding activity of different carrageenans in aqueous solutions containing Y3+ or Pb2+ ions was studied in a batch sorption system. The metal uptake by carrageenans is not affected by the change of the pH within the range from 2.0 to 6.0. The rates and binding capacities of carrageenans regarding metal ions were evaluated. The Langmuir, Freundlich and BET sorption models were applied to describe the isotherms and constants, and the sorption isothermal data could be explained well by the Langmuir equation. The results obtained through the study suggest that κ-, ι-, and λ-carrageenans are favorable sorbents. The largest amount of Y3+ and Pb2+ ions are bound by ι-carrageenan. Therefore, it can be concluded that this type of polysaccharide is the more appropriate substance for elaboration of the drugs with high selective metal binding properties

    Healing and Preventive Effects of Calcium Alginate on Carbon Tetrachloride Induced Liver Injury in Rats

    No full text
    The purpose of this study was to investigate the pharmacological effects of calcium alginate on carbon tetrachloride (CCL4)-induced hepatotoxicity in rats. The study included two experiments. In the first experiment the animals were given daily CCL4 through gavage for 7 days and then 10, 50, or 250 mg/kg b.w. of calcium alginate for 21 days. The increased bilirubin level, enhanced alanine and aspartate aminotransferase activity in plasma and reduced liver glycogen content induced by CCL4 were partly normalized by alginate administration in a dose-dependent manner. In addition, alginate significantly improved CCL4-induced alterations of pro-oxidant and antioxidant biochemical parameters in liver and plasma compared to those of rats administered CCL4. In the second experiment the animals were given daily 10, 50 or 250 mg/kg b.w. of calcium alginate for 21 days before 7-day administration of CCL4. Pretreatment with alginate before CCL4 administration resulted in significantly inhibited increase of the blood enzymatic activities of alanine and aspartate aminotransferases and bilirubin level in a dose-dependent manner. Also, preliminary administration of alginate prevented elevation of lipid peroxidation products and reduction of liver glutathione content in rats given CCL4. These results suggest that calcium alginate exerts healing and preventive effects on CCL4-induced hepatotoxicity in rats

    κ- and λ-Carrageenans from Marine Alga Chondrus armatus Exhibit Anticancer In Vitro Activity in Human Gastrointestinal Cancers Models

    No full text
    The carrageenans isolated from red algae demonstrated a variety of activities from antiviral and immunomodulatory to antitumor. The diverse structure and sulfation profile of carrageenans provide a great landscape for drug development. In this study, we isolated, purified and structurally characterized κo- and λo- oligosaccharides from the marine algae Chondrus armatus. We further examined the tumor suppressive activity of both carrageenans in gastrointestinal cancer models. Thus, using MTT assay, we could demonstrate a pronounced antiproliferative effect of the carrageenans in KYSE-30 and FLO-1 as well as HCT-116 and RKO cell lines with IC50 184~405 μg/mL, while both compounds were less active in non-cancer epithelial cells RPE-1. This effect was stipulated by the inhibition of cell cycle progression in the cancer cells. Specifically, flow cytometry revealed an S phase delay in FLO-1 and HCT-116 cells under κo-carrageenan treatment, while KYSE-30 demonstrated a pronounced G2/M cell cycle delay. In line with this, western blotting revealed a reduction of cell cycle markers CDK2 and E2F2. Interestingly, κo-carrageenan inhibited cell cycle progression of RKO cells in G1 phase. Finally, isolated κo- and λo- carrageenans induced apoptosis on adenocarcinomas, specifically with high apoptosis induction in RKO cells. Overall, our data underline the potential of κo- and λo- carrageenans for colon and esophageal carcinoma drug development

    Additional file 1: Figure S1. of Acute neuroinflammation provokes intracellular acidification in mouse hippocampus

    No full text
    Demonstration of pHo measurements. A. A calibration curve built using two phosphate buffers (pH 6.9 and 7.4). Such calibration curves were built for each of the pH-sensitive micropipettes. B. Recordings of voltage profiles with a pH-sensitive (Vp) and a regular (Ve) micropipette. The pH-sensitive micropipette was first placed at the starting position 200 μm above the slice surface and then moved down by 20-μm steps to the position −180 μm below the slice surface. The same procedure was repeated with the regular microelectrode (Ve). The difference between the Vp and Ve values was used to compute pHo at each distance from the slice surface, thus generating a pHo profile. C. Profile of pHo. The values were computed as pHo = (Vp − Ve)/K
    corecore