99 research outputs found

    The privilege of induction avoidance and calcineurin inhibitors withdrawal in 2 haplotype HLA matched white kidney transplantation

    Get PDF
    BACKGROUND: White recipients of 2-haplotype HLA-matched living kidney transplants are perceived to be of low immunologic risk. Little is known about the safety of induction avoidance and calcineurin inhibitor withdrawal in these patients. METHODS: We reviewed our experience at a single center and compared it to Organ Procurement and Transplantation Network (OPTN) registry data and only included 2-haplotype HLA-matched white living kidney transplants recipients between 2000 and 2013. RESULTS: There were 56 recipients in a single center (where no induction was given) and 2976 recipients in the OPTN. Among the OPTN recipients, 1285 received no induction, 903 basiliximab, 608 thymoglobulin, and 180 alemtuzumab. First-year acute rejection rates were similar after induction-free transplantation among the center and induced groups nationally. Compared with induction-free transplantation in the national data, there was no decrease in graft failure risk over 13 years with use of basiliximab (adjusted hazard ratio [aHR], 0.86; confidence interval [CI], 0.68-1.08), Thymoglobulin (aHR, 0.92; CI, 0.7-1.21) or alemtuzumab (aHR, 1.18; CI, 0.72-1.93). Among induction-free recipients at the center, calcineurin inhibitor withdrawal at 1 year (n = 27) did not significantly impact graft failure risk (HR,1.62; CI, 0.38-6.89). CONCLUSIONS: This study may serve as a foundation for further studies to provide personalized, tailored, immunosuppression for this very low-risk population of kidney transplant patients

    Seasonal Performance of White Clover in Mixed-Sward Grazing Pasture Highlights Genotype by Environment Interaction

    Get PDF
    White clover is an important forage crop because of its nutritional value, ability to provide plantavailable nitrogen via symbiosis with Rhizobium soil bacteria, and year-round availability of dry matter (DM) yield. However, its performance in mixed sward-based pastures is characterised by seasonal variability and declining DM yield over time. The identification of white clover genotypes adapted for across seasonal performance is an important goal in white clover breeding. In this study, we evaluated the seasonal performance of 200 white clover half-sib families using visual growth scores and calibrated dry matter yield based on growth scores measured for three years in two locations. Results showed significant variation for growth scores across years, seasons and locations. Significant G×E was observed in the form of year, location and season interactions. Calibrated DM yield was highest in the second-year summer with clover content declining in the third year. Spring and winter were identified as potential vulnerable periods for white clover growth in pastures

    Different domains of dengue research in the Philippines: A systematic review and meta- analysis of questionnaire-based studies

    Get PDF
    Dengue is the most rapidly spreading mosquito-borne viral disease of humans worldwide, including southeast Asia region. This review provides a comprehensive overview of questionnaire-related dengue studies conducted in the Philippines and evaluates their reliability and validity in these surveys. A review protocol constructed by a panel of experienced academic reviewers was used to formulate the methodology, research design, search strategy and selection criteria. An extensive literature search was conducted between March–June 2020 in various major electronic biomedical databases including PubMed, EMBASE, MEDLINE and ScienceDirect. A systematic review and meta-analysis (PRISMA) were selected as the preferred item reporting method. Out of a total of 34 peer-reviewed dengue-related KAP studies that were identified, 15 published from 2000 to April 2020 met the inclusion criteria. Based on the meta-analysis, a poor mean score was obtained for each of knowledge (68.89), attitude (49.86) and preventive practice (64.69). Most respondents were equipped with a good knowledge of the major clinical signs of dengue. Worryingly, 95% of respondents showed several negative attitudes towards dengue prevention, claiming that this was not possible and that enacting preventive practices was not their responsibility. Interestingly, television or radio was claimed as the main source of gaining dengue information (range 50–95%). Lastly, only five articles (33.3%) piloted or pretested their questionnaire before surveying, of which three reported Cronbach’s alpha coefficient (range 0.70 to 0.90). This review indicates that to combat the growing public health threat of dengue to the Philippines, we need the active participation of resident communities, full engagement of healthcare personnel, promotion of awareness campaigns, and access to safe complementary and alternative medicines. Importantly, the psychometric properties of each questionnaire should be assessed rigorously

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.This work was primarily funded by an EU Horizon 2020 grant “PIGSs” (727966) and a ZELS BBSRC award “Myanmar Pigs Partnership (MPP)” (BB/L018934/1). G.G.R.M., E.L.M., and L.A.W. were supported by a Sir Henry Dale Fellowship to L.A.W. jointly funded by the Wellcome Trust and the Royal Society (109385/Z/15/Z). N.H. was supported by a Challenge grant from the Royal Society (CH16011) and an Isaac Newton Trust Research Grant [17.24(u)]. G.G.R.M. was also supported by a Research Fellowship at Newnham College. S.B. is supported by the Medical Research Council (MR/V032836/1). PIC North America provided part of the funds for the sequencing of the isolates from the USA. A.J.B. and M.M. were funded by Medical Research Council and Biotechnology and Biological Sciences Research Council studentships respectively, and M.M. was co-funded by the Raymond and Beverly Sackler Fund. We would like to acknowledge Susanna Williamson at the APHA for providing samples, Oscar Cabezón for sampling of the wild boar population in Spain, Mark O’Dea for access to sequence data from Australian isolates, the PIGSs and MPP consortiums for providing samples and helpful discussions, Julian Parkhill and John Welch for helpful discussions, and two anonymous reviewers for their valuable suggestions for improving the manuscript. This research was funded in whole or in part by the Wellcome Trust. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.info:eu-repo/semantics/publishedVersio

    Advanced Hodgkin lymphoma in the East of England: a 10-year comparative analysis of outcomes for real-world patients treated with ABVD or escalated-BEACOPP, aged less than 60 years, compared with 5-year extended follow-up from the RATHL trial.

    Get PDF
    Treatment with ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) or escalated(e)-BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone) remains the international standard of care for advanced-stage classical Hodgkin lymphoma (HL). We performed a retrospective, multicentre analysis of 221 non-trial ("real-world") patients, aged 16-59 years, diagnosed with advanced-stage HL in the Anglia Cancer Network between 2004 and 2014, treated with ABVD or eBEACOPP, and compared outcomes with 1088 patients in the Response-Adjusted Therapy for Advanced Hodgkin Lymphoma (RATHL) trial, aged 18-59 years, with median follow-up of 87.0 and 69.5 months, respectively. Real-world ABVD patients (n=177) had highly similar 5-year progression-free survival (PFS) and overall survival (OS) compared with RATHL (PFS 79.2% vs 81.4%; OS 92.9% vs 95.2%), despite interim positron-emission tomography-computed tomography (PET/CT)-guided dose-escalation being predominantly restricted to trial patients. Real-world eBEACOPP patients (n=44) had superior PFS (95.5%) compared with real-world ABVD (HR 0.20, p=0.027) and RATHL (HR 0.21, p=0.015), and superior OS for higher-risk (international prognostic score ≥3 [IPS 3+]) patients compared with real-world IPS 3+ ABVD (100% vs 84.5%, p=0.045), but not IPS 3+ RATHL patients. Our data support a PFS, but not OS, advantage for patients with advanced-stage HL treated with eBEACOPP compared with ABVD and suggest higher-risk patients may benefit disproportionately from more intensive therapy. However, increased access to effective salvage therapies might minimise any OS benefit from reduced relapse rates after frontline therapy

    CD133+ adult human retinal cells remain undifferentiated in Leukaemia Inhibitory Factor (LIF)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD133 is a cell surface marker of haematopoietic stem and progenitor cells. Leukaemia inhibitory factor (LIF), sustains proliferation and not differentiation of embryonic stem cells. We used CD133 to purify adult human retinal cells and aimed to determine what effect LIF had on these cultures and whether they still had the ability to generate neurospheres.</p> <p>Methods</p> <p>Retinal cell suspensions were derived from adult human post-mortem tissue with ethical approval. With magnetic automated cell sorting (MACS) CD133<sup>+ </sup>retinal cells were enriched from post mortem adult human retina. CD133<sup>+ </sup>retinal cell phenotype was analysed by flow cytometry and cultured cells were observed for proliferative capacity, neuropshere generation and differentiation with or without LIF supplementation.</p> <p>Results</p> <p>We demonstrated purification (to 95%) of CD133<sup>+ </sup>cells from adult human postmortem retina. Proliferating cells were identified through BrdU incorporation and expression of the proliferation markers Ki67 and Cyclin D1. CD133<sup>+ </sup>retinal cells differentiated whilst forming neurospheres containing appropriate lineage markers including glia, neurons and photoreceptors. LIF maintained CD133<sup>+ </sup>retinal cells in a proliferative and relatively undifferentiated state (Ki67, Cyclin D1 expression) without significant neurosphere generation. Differentiation whilst forming neurospheres was re-established on LIF withdrawal.</p> <p>Conclusion</p> <p>These data support the evidence that CD133 expression characterises a population of cells within the resident adult human retina which have progenitor cell properties and that their turnover and differentiation is influenced by LIF. This may explain differences in retinal responses observed following disease or injury.</p

    Phenotypic Characterization of EIF2AK4 Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a rare disease with an emerging genetic basis. Heterozygous mutations in the gene encoding the bone morphogenetic protein receptor type 2 (BMPR2) are the commonest genetic cause of PAH, whereas biallelic mutations in the eukaryotic translation initiation factor 2 alpha kinase 4 gene (EIF2AK4) are described in pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Here, we determine the frequency of these mutations and define the genotype-phenotype characteristics in a large cohort of patients diagnosed clinically with PAH. METHODS: Whole-genome sequencing was performed on DNA from patients with idiopathic and heritable PAH and with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis recruited to the National Institute of Health Research BioResource-Rare Diseases study. Heterozygous variants in BMPR2 and biallelic EIF2AK4 variants with a minor allele frequency of <1:10 000 in control data sets and predicted to be deleterious (by combined annotation-dependent depletion, PolyPhen-2, and sorting intolerant from tolerant predictions) were identified as potentially causal. Phenotype data from the time of diagnosis were also captured. RESULTS: Eight hundred sixty-four patients with idiopathic or heritable PAH and 16 with pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis were recruited. Mutations in BMPR2 were identified in 130 patients (14.8%). Biallelic mutations in EIF2AK4 were identified in 5 patients with a clinical diagnosis of pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis. Furthermore, 9 patients with a clinical diagnosis of PAH carried biallelic EIF2AK4 mutations. These patients had a reduced transfer coefficient for carbon monoxide (Kco; 33% [interquartile range, 30%-35%] predicted) and younger age at diagnosis (29 years; interquartile range, 23-38 years) and more interlobular septal thickening and mediastinal lymphadenopathy on computed tomography of the chest compared with patients with PAH without EIF2AK4 mutations. However, radiological assessment alone could not accurately identify biallelic EIF2AK4 mutation carriers. Patients with PAH with biallelic EIF2AK4 mutations had a shorter survival. CONCLUSIONS: Biallelic EIF2AK4 mutations are found in patients classified clinically as having idiopathic and heritable PAH. These patients cannot be identified reliably by computed tomography, but a low Kco and a young age at diagnosis suggests the underlying molecular diagnosis. Genetic testing can identify these misclassified patients, allowing appropriate management and early referral for lung transplantation

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
    corecore