88 research outputs found

    Mechanism of Deep-focus Earthquakes Anomalous Statistics

    Full text link
    Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake distribution in the Earth interior over the 1993-2006 is characterized by the clearly defined periodical fine discrete structure with period L=50 km, which is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the convergent boundary of plates. To describe the formation of this structure we used the model of complex systems by A. Volynskii and S. Bazhenov. The key property of this model consists in the presence of a rigid coating on a soft substratum. It is shown that in subduction processes the role of a rigid coating plays the slab substance (lithosphere) and the upper mantle acts as a soft substratum. Within the framework of this model we have obtained the estimation of average values of stress in the upper mantle and Young's modulus for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure

    KamLAND-experiment and Soliton-like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment

    Full text link
    We give an alternative description of the data produced in the KamLAND experiment, assuming the existence of a natural nuclear reactor on the boundary of the liquid and solid phases of the Earth's core. Analyzing the uncertainty of antineutrino spectrum of georeactor origin, we show that the theoretical (which takes into account the soliton-like nuclear georeactor) total reactor antineutrino spectra describe with good accuracy the experimental KamLAND-data over the years of 2002-2007 and 2002-2009, respectively. At the same time the parameters of mixing ({\Delta}(m21)^2=2.5\cdot 10^-5 eV^2, tan^2{\theta}12=0.437) calculated within the framework of georeactor hypothesis substantially differ from the parameters of mixing ({\Delta}(m21)^2=7.49\cdot 10^-5 eV^2, tan^2{\theta}12=0.436) obtained in KamLAND-experiment for total exposure over the period of 2002-2009. By traingulation of KamLAND and Borexino data we have constructed the coordinate location of soliton-like nuclear georeactors on the boundary of the liquid and solid phases of the Earth core. Based on the necessary condition of full synchronization of geological (magnetic) time scale and time evolution of heat power of nuclear georeactor, which plays the role of energy source of the Earth magnetic field, and also the strong negative correlation between magnetic field of the solar tachocline zone and magnetic field of the Earth liquid core (Y-component) we have obtain the estimation of nuclear georeactor average heat power ~30 TW over the years 2002-2009.Comment: 50 pages; 17 figures; 1 table. A substantially revised, corrected and enhanced editio

    10KP: A phylodiverse genome sequencing plan.

    Get PDF
    Understanding plant evolution and diversity in a phylogenomic context is an enormous challenge due, in part, to limited availability of genome-scale data across phylodiverse species. The 10KP (10,000 Plants) Genome Sequencing Project will sequence and characterize representative genomes from every major clade of embryophytes, green algae, and protists (excluding fungi) within the next 5 years. By implementing and continuously improving leading-edge sequencing technologies and bioinformatics tools, 10KP will catalogue the genome content of plant and protist diversity and make these data freely available as an enduring foundation for future scientific discoveries and applications. 10KP is structured as an international consortium, open to the global community, including botanical gardens, plant research institutes, universities, and private industry. Our immediate goal is to establish a policy framework for this endeavor, the principles of which are outlined here

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Rapid Chromosome Evolution in Recently Formed Polyploids in Tragopogon (Asteraceae)

    Get PDF
    Polyploidy, frequently termed "whole genome duplication", is a major force in the evolution of many eukaryotes. Indeed, most angiosperm species have undergone at least one round of polyploidy in their evolutionary history. Despite enormous progress in our understanding of many aspects of polyploidy, we essentially have no information about the role of chromosome divergence in the establishment of young polyploid populations. Here we investigate synthetic lines and natural populations of two recently and recurrently formed allotetraploids Tragopogon mirus and T. miscellus (formed within the past 80 years) to assess the role of aberrant meiosis in generating chromosomal/genomic diversity. That diversity is likely important in the formation, establishment and survival of polyploid populations and species.Applications of fluorescence in situ hybridisation (FISH) to natural populations of T. mirus and T. miscellus suggest that chromosomal rearrangements and other chromosomal changes are common in both allotetraploids. We detected extensive chromosomal polymorphism between individuals and populations, including (i) plants monosomic and trisomic for particular chromosomes (perhaps indicating compensatory trisomy), (ii) intergenomic translocations and (iii) variable sizes and expression patterns of individual ribosomal DNA (rDNA) loci. We even observed karyotypic variation among sibling plants. Significantly, translocations, chromosome loss, and meiotic irregularities, including quadrivalent formation, were observed in synthetic (S(0) and S(1) generations) polyploid lines. Our results not only provide a mechanism for chromosomal variation in natural populations, but also indicate that chromosomal changes occur rapidly following polyploidisation.These data shed new light on previous analyses of genome and transcriptome structures in de novo and establishing polyploid species. Crucially our results highlight the necessity of studying karyotypes in young (<150 years old) polyploid species and synthetic polyploids that resemble natural species. The data also provide insight into the mechanisms that perturb inheritance patterns of genetic markers in synthetic polyploids and populations of young natural polyploid species

    Phylogenomic Mining of the Mints Reveals Multiple Mechanisms Contributing to the Evolution of Chemical Diversity in Lamiaceae

    Get PDF
    The evolution of chemical complexity has been a major driver of plant diversification, with novel compounds serving as key innovations. The species-rich mint family (Lamiaceae) produces an enormous variety of compounds that act as attractants and defense molecules in nature and are used widely by humans as flavor additives, fragrances, and anti-herbivory agents. To elucidate the mechanisms by which such diversity evolved, we combined leaf transcriptome data from 48 Lamiaceae species and four outgroups with a robust phylogeny and chemical analyses of three terpenoid classes (monoterpenes, sesquiterpenes, and iridoids) that share and compete for precursors. Our integrated chemical–genomic–phylogenetic approach revealed that: (1) gene family expansion rather than increased enzyme promiscuity of terpene synthases is correlated with mono- and sesquiterpene diversity; (2) differential expression of core genes within the iridoid biosynthetic pathway is associated with iridoid presence/absence; (3) generally, production of iridoids and canonical monoterpenes appears to be inversely correlated; and (4) iridoid biosynthesis is significantly associated with expression of geraniol synthase, which diverts metabolic flux away from canonical monoterpenes, suggesting that competition for common precursors can be a central control point in specialized metabolism. These results suggest that multiple mechanisms contributed to the evolution of chemodiversity in this economically important family. The mint family (Lamiaceae) includes many culturally and economically important species and collectively exhibits an exceptionally high degree of chemical diversity. Using an integrated chemical-genomic-phylogenetic approach, gene family expansion, altered gene expression of key biosynthetic pathway genes, and flux of precursors were shown to underlie the evolution of chemodiversity observed in this chemically rich clade
    • …
    corecore