439 research outputs found

    Ranked Choice Voting in Minneapolis 2013 Elections

    Get PDF
    Ranked choice voting (RCV), also known as instant runoff voting (IRV), is claimed to be a more inclusive electoral system compared to the two-round single-vote plurality system commonly used in the United States. RCV is argued to be more inclusive because it maximizes the number of people participating in the decisive election, and because it inspires more inclusive campaigning as candidates try to earn second choice and third choice votes. RCV is not widely used in the United States; there is not a great deal of research on whether RCV achieves these goals. Through interviews with campaign strategists and expert election observers, this research determined that there was some evidence that RCV was effective in promoting greater inclusivity in the 2013 Minneapolis city elections, and puts forth a justice-oriented framework in which inclusion can be assessed

    Examining Everyday Literacies: An Autoethnographic Analysis of Mundane Textualities

    Get PDF
    As a way of extending perspectives of writing and learning, this thesis explores everyday literacy activities and their role in function in shaping people\u27s activities. Taking up an autoethnographic approach to studying the mundane literacies of everyday life, this thesis offers a fine-grained analysis of the processes and practices involved in two specific literate activities I have engaged in over the two years: creating a mixtape for a friend and streaming my participation in online video games. As key findings, the analysis of these everyday literate activities suggests that the interactions between people and social contexts figure prominently in the production and use of everyday texts, that everyday life is profoundly mediated by digital literacies, and that everyday literacies are often central to people\u27s academic and professional lives. Ultimately, these analyses point toward the need for further inquiry into digital literacies, and to the potential pedagogical benefits of encouraging students to examine the mundane literacies at play in their everyday lives

    Magnetically Directed Two-Dimensional Crystallization of OmpF Membrane Proteins in Block Copolymers

    Get PDF
    Two-dimensional (2D) alignment and crystallization of membrane proteins (MPs) is increasingly important in characterizing their three-dimensional (3D) structure, in designing pharmacological agents, and in leveraging MPs for biomimetic devices. Large, highly ordered MP 2D crystals in block copolymer (BCP) matrices are challenging to fabricate, but a facile and scalable technique for aligning and crystallizing MPs in thin-film geometries would rapidly translate into applications. This work introduces a novel method to grow larger and potentially better ordered 2D crystals by performing the crystallization process in the presence of a strong magnetic field. We demonstrate the efficacy of this approach using a \u3b2-barrel MP, outer membrane protein F (OmpF), in short-chain polybutadiene-poly(ethylene oxide) (PB-PEO) membranes. Crystals grown in a magnetic field were up to 5 times larger than conventionally grown crystals, and a signal-to-noise (SNR) analysis of diffraction peaks in Fourier transforms of specimens imaged by negative-stain electron microscopy (EM) and cryo-EM showed twice as many high-SNR diffraction peaks, indicating that the magnetic field also improves crystal order

    Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia

    Full text link
    Western Australia has globally significant onshore gas resources, with over 280 trillion cubic feet of economically recoverable gas located in five shale basins. The Western Australian Government and gas industry have promoted the development of these resources as a “clean energy source” that would “help to reduce global carbon emissions” and provide a “transition fuel” to a low carbon economy. This research examines those claims by reviewing existing literature and published data to estimate the life cycle greenhouse gas (GHG) pollution that would result from the development of Western Australia’s onshore gas basins using hydraulic fracking. Estimates of carbon pollution from each stage in gas development, processing, transport and end-use are considered in order to establish total life-cycle emissions in tonnes of carbon-dioxide equivalent (CO2e). The emissions estimates draw from published research on emissions from shale gas development in other jurisdictions as well as industry or government reported emissions from current technology for gas processing and end-use as applicable. The current policy and regulatory environment for carbon pollution and likely resulting GHG mitigation measures has also been considered, as well as the potential for the gas to displace or substitute for other energy sources. In areas where there is uncertainty, conservative emissions estimates have been used. Modelling of GHG emissions has been undertaken for two comparison resource development and utilisation scenarios; Australian domestic and 100% export i.e. no domestic use. Each scenario corresponds to a different proportionate allocation of emissions accounted for domestic emissions in Australia and emissions accounted for in other jurisdictions. Emissions estimates for the two scenarios are 245–502 MTCO2e/year respectively over a resource development timeframe of 20 years. This is roughly the same as Australia’s total GHG emissions in 2014 which were 525 MTCO2e/year. This research concludes that GHG emissions resulting from the development of Western Australia’s five onshore gas basins would be equivalent to all other Australian emissions sources combined at 2014 levels each year for 20 years which is the general lifetime of a well

    Effects of meteorological and land surface modeling uncertainty on errors in winegrape ET calculated with SIMS

    Get PDF
    Characterization of model errors is important when applying satellite-driven evapotranspiration (ET) models to water resource management problems. This study examines how uncertainty in meteorological forcing data and land surface modeling propagate through to errors in final ET data calculated using the Satellite Irrigation Management Support (SIMS) model, a computationally efficient ET model driven with satellite surface reflectance values. The model is applied to three instrumented winegrape vineyards over the 2017-2020 time period and the spatial and temporal variation in errors are analyzed. We illustrate how meteorological data inputs can introduce biases that vary in space and at seasonal timescales, but that can persist from year to year. We also observe that errors in SIMS estimates of land surface conductance can have a particularly strong dependence on time of year. Overall, meteorological inputs introduced RMSE of 0.33-0.65 mm/day (7-27%) across sites, while SIMS introduced RMSE of 0.55-0.83 mm/day (19-24%). The relative error contribution from meteorological inputs versus SIMS varied across sites; errors from SIMS were larger at one site, errors from meteorological inputs were larger at a second site, and the error contributions were of equal magnitude at the third site. The similar magnitude of error contributions is significant given that many satellite-driven ET models differ in their approaches to estimating land surface conductance, but often rely on similar or identical meteorological forcing data. The finding is particularly notable given that SIMS makes assumptions about the land surface (no soil evaporation or plant water stress) that do not always hold in practice. The results of this study show that improving SIMS by eliminating these assumptions would result in meteorological inputs dominating the error budget of the model on the whole. This finding underscores the need for further work on characterizing spatial uncertainty in the meteorological forcing of ET

    Thermally controlled growth of carbon onions within porous graphitic carbon-detonation nanodiamond monolithic composites

    Get PDF
    Unique porous carbon monoliths containing thermally annealed carbon onions, were prepared from a resorcinol formaldehyde precursor rod, containing silica gel acting as a hard template, detonation nanodiamond, and Fe3+ as a graphitisation catalyst. Detonation nanodiamond was converted to carbon onions during controlled pyrolysis under N2, where the temperature cycle reached a maximum of 1250 °C. Thermal characterisation and high resolution electron microscopy have confirmed the graphitisation of nanodiamond, and revealed the resulting quasi-spherical carbon onions with an average particle size of 5.24 nm. The bimodal porous composite contains both macropores (5 Όm) and mesopores (10 nm), with a BET surface area of 214 m2 g-1 for a nanodiamond prepared monolith (0.012 wt% nanodiamond in the precursor mixture), approximately twice that of blank monoliths, formed without the addition of nanodiamond, thus providing a new approach to increase surface area of such porous carbon rods. Raman spectroscopy and X-ray photoelectron spectroscopy also confirmed an enhanced graphitisation of the monolithic carbon skeleton resulting from the elevated thermal conductivity of the added nanodiamond. TEM imaging has confirmed the nanodiamond remains intact following pyrolysis at temperatures up to 900 °C
    • 

    corecore