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ABSTRACT 

High breast density (BD) is recognized as an independent risk factor for breast cancer development, in 

addition to negatively impacting the sensitivity of mammography. Although BD is normally assessed with the 

BI-RADS reporting system, this evaluation is qualitative and has been shown to vary considerably across 

readers. In this pilot study, we present a deep learning (DL) method to quantify BD from a standard two-view 

(cranio-caudal, and medio-lateral-oblique) mammography exam. With the aim of developing a method based 

on an objective ground truth, the DL model was trained and validated using 88 simulated mammograms from 

an equal number of distinct 3D digital breast phantoms for which BD is known. The phantoms had been 

previously generated through segmentation and simulated mechanical compression of patient dedicated breast 

CT images, allowing for the exact calculation of BD in each case. Different data augmentations were applied 

prior to simulation, to increase the dataset size, yielding a total of 528 cases. These were divided, randomly 

and on a patient level, into training (N=360), validation (N=60), and test sets (N=108). The DL model 

performance was tested by stratifying the breasts into four different density ranges: 1-15%, 15-25%, 25-60%, 

and >60%. The median absolute errors and interquartile ranges (IQR), in percentage points, were 3.3 (IQR: 

3.5), 3.4 (IQR: 2.5), 3.5 (IQR: 3.9), and 14.8 (IQR: 8.4), respectively. Although preliminary, these results 

show the potential of the proposed approach for accurate BD quantification, which is based, as opposed to 

most previously proposed approaches, on an objective ground truth. 

SUMMARY 

In this work we present a deep learning (DL) based method to estimate breast density from simulated digital 

mammograms using the two standard views of a mammographic exam (cranio-caudal and medio-lateral 

oblique) as the main inputs to the DL model. For training and validating the DL model, ray-traced 

mammograms simulated from patient-based 3D digital breast phantoms (with known density) were used. The 

DL model was able to estimate breast density in our test set with an overall median absolute error of 3.6 

percentage point, indicating the potential of the proposed approach. 
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1. DESCRIPTION OF PURPOSE 

Breast density is an important breast cancer risk factor [1]. For this reason, the estimation of breast density from 

digital mammograms is a highly active area of research [2], including the development of Artificial Intelligence 

(AI) models for this task. However, these models mainly characterize breast density based on the BI-RADS 

breast density categories, or based on ground truth obtained with annotations from human readers [3]–[8].  

In this pilot study, we developed a deep learning model to quantify breast density from simulated mammograms 

obtained from patient-based phantoms with known density, to test if DL could potentially quantify breast 

density, and thus be of clinical value. Our model was tested, in terms of accuracy in density prediction, on two 

internal test sets independent from model fine-tuning and validation, test set.  

2. METHODS 

This section will discuss the breast phantoms used, the mammogram simulations, the preprocessing of the 

mammograms before putting them into the DL models, a DL model for determining the region of constant 

thickness (where the breast is in contact with the compression paddle), and the DL model for breast density 

estimation. 

 
a. Patient-Based Breast Phantoms 

Previously, a total of 88 digital breast phantoms were generated from as many patient images acquired with a 

dedicated breast CT system (Koning Corporation, Norcross, GA, USA). The images were acquired during an 

unrelated clinical trial aiming at the evaluation of breast computed tomography (CT) in a diagnostic setting. 

Each image was reconstructed using filtered back projection (Shepp-Logan kernel), and underwent automatic 

segmentation aimed at voxel-wise classification into four categories: air, adipose tissue, fibroglandular tissue, 

and skin [9]. These classified breast images were subsequently converted into finite element biomechanical 

models and underwent the simulation of mechanical compression using a previously developed computational 

method [10]. Compression was simulated and applied along the two standard directions acquired during a 

mammographic exam (cranio-caudal (CC), and medio-lateral oblique (MLO)). Each case was compressed to a 

different thickness, equivalent to the compressed breast thickness recorded in the image header of the CC- or 

MLO-view digital breast tomosynthesis (DBT) image of the corresponding patient breast. 

As a result, 88 compressed breast phantoms were obtained for the CC and the MLO direction of compression, 

with isotropic voxel size equal to that of the acquired breast CT images (0.273 mm x 0.273 mm x 0.273 mm), 

with thickness equal to that obtained during the corresponding DBT examination. The compressed phantoms 

were augmented to increase the size of the dataset by increasing or decreasing the size of the breast by 10%, 

and by dilation (radius of 2 and 4 voxels) or erosion (radius of 1 voxel) of the fibroglandular tissue. These 5 

augmentations resulted in a total of 528 compressed phantoms (6x88, per view), which were divided, randomly 

and on a patient level, into train (N = 360), validation (N = 60) and test sets (N = 108).    

b. Mammogram Simulations 

Mammographic images of all 528 phantoms were simulated in two main steps, ray-tracing and the calculation 

of a primary image. For the ray-tracing, a pre-developed and validated GPU-based Cone-Beam projector was 

used [11]. This projector takes the point source, detector geometry, and phantom as inputs and generates a 

thickness map of the implemented detector dimensions, for each of the four voxel classes (air, adipose tissue, 

fibroglandular tissue, and skin). Subsequently, the thickness maps for the different materials are used to simulate 

the air kerma (AK) projection using the discretized version of the polychromatic Lambert's law (Equation 1):  
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 𝐴𝐾(𝑥, 𝑦) =∑𝑒 ∙ 𝑁𝑒 ∙ exp(−∑𝜇(𝑒,𝑚) ∙ 𝑇(𝑚, 𝑥, 𝑦)

𝑚

) ∙ (
𝜇𝑡𝑟
𝜌𝑎𝑖𝑟

)
𝑒𝑒

 (1) 

where 𝐴𝐾(𝑥, 𝑦) is the air kerma at each detector pixel (𝑥, 𝑦), 𝑒 is the current energy bin of the spectrum model, 

𝑁𝑒 is the photon fluence of the current energy bin, (
𝜇𝑡𝑟

𝜌𝑎𝑖𝑟
)
𝑒
 is the mass-energy-transfer coefficient for the air for 

energy 𝑒 to convert the photon energy fluence to air kerma, 𝜇(𝑒,𝑚) is the attenuation coefficient of material 𝑚 

at energy 𝑒, and 𝑇(𝑚, 𝑥, 𝑦) is the thickness of material 𝑚 for each detector pixel (𝑥, 𝑦). To then obtain the 

primary image, 𝐴𝐾(𝑥, 𝑦) was converted to digital units using linear scaling between the measured air kerma 

and the average background pixel value of the simulated mammography system. The spectrum model used was 

based on the work of Hernandez et al [12]. The simulations were performed using the geometry and acquisition 

settings of the Siemens Mammomat Inspiration (Forchheim, Germany) clinical system, with the tube voltage 

varying between 26 kV and 32 kV according to the breast thickness [13] and a detector pixel size of 0.085 mm. 

The simulations were then subsequently repeated, only for the test set, using the geometry and acquisition 

settings of a different mammographic system (Hologic Selenia Dimensions), with the tube voltage varying 

between 25 kV and 36 kV according to the breast thickness and a detector pixel size of 0.07 mm. For both 

simulated systems, the tube voltage was selected, for each phantom, according to those used by the automatic 

exposure control of the respective system. 

c. Mammogram Preprocessing 

All simulated mammograms were preprocessed before they were put into the DL model. First, the smallest 

rectangular region of interest (ROI) encompassing the entire breast was automatically selected for each 

simulated mammogram. The rest of the image was excluded to limit the background information in the 

mammograms. This operation resulted in each mammogram being cropped to a different dimension, according 

to the size of each projected breast. Therefore, all mammograms were subsequently resized to a dimension of 

256x128 pixels (linear interpolation), and the new pixel size (ranging from 0.357 mm to 0.907 mm (CC) and 

0.428 mm to 0.863 mm (MLO) for the horizontal direction and 0.228 mm to 1.236 mm (CC) and 0.232 mm to 

1.284 mm (MLO) for the vertical direction) resulting from this resizing operation was calculated and saved. 

The mammogram was down sampled to these relatively small dimensions to make the framework faster. Since 

the density is a global breast characteristic, it should be predictable from lower resolution images adequately. 

Second, the remaining open field pixels in each mammogram were set to zero, and the breast pixels were 

normalized by the value of the pixel(s) assumed to contain only adipose tissue. This was automatically selected 

by choosing the pixel(s) with the highest value within the region of the mammogram with constant thickness 

(i.e., in full contact with the compression paddle and the breast support table), known exactly in simulation. 

This normalization was performed to standardize the pixel value range in each mammogram to a reference 

value, and thus correct for any potential bias in pixel values introduced by the x-ray spectrum being discretized 

into steps for given thickness ranges. Finally, a last normalization step was performed to ease the training of 

the developed DL model for density estimation. For this, the image values were inverted, normalized to the 

maximum pixel value present in the whole training set, and the range of pixel values was made broader by cubic 

scaling. 

d. Automatic Detection of Adipose-only Pixel 

To make our method fully automatic and able to work only with the simulated mammograms as input, two 

similar U-Nets (one for CC, and one for MLO) [14] were implemented to automatically segment the part of the 

mammogram with constant breast thickness, used to identify the first normalization factor (i.e., pixel containing 

only adipose tissue). The U-Nets were trained and fine-tuned using the simulated mammograms (input) and the 

respective binarized summed thickness maps (output) from the training and validation set, respectively. 

The implemented U-Nets were 4 layers deep, with final sigmoid activation. Each layer in the down-sampling 

part consisted of two blocks of 2D convolution, batch normalization and ReLU followed by max pooling. In 
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the bottleneck, two blocks of 2D convolution, batch normalization and ReLU were used. Each block in the up-

sampling part consisted of transposed convolution, concatenation with the corresponding downsampling block, 

and two blocks of convolution, batch normalization and ReLU. The U-Nets were trained for 25 epochs with a 

batch size of 8, with a learning rate of 0.0001 with a decay factor of 0.8 every 4 epochs. The Adam optimizer 

was used to minimize a pixel-wise binary cross entropy loss. All convolution kernels had size 3 and stride 1, 

all pooling layers had kernel size 2 and stride 2. 

The U-Nets performance was quantified with the Dice similarity coefficient, with respect to the ground truth 

given by the summed thickness maps. After training the U-Nets, the results were eroded (radius of 3 pixels) 

before applying them to the test set to segment the region of the breast with constant thickness, from which the 

normalization factor was calculated as described in the previous section. The erosion was performed to ensure 

that the mask includes only fully compressed voxels, correcting for potential errors at the boundary that might 

have affected the identification of the adipose-only pixel. 

e. Deep Learning Model for Density Estimation: Training, Validation, and Testing 

The DL model developed to estimate breast density from the simulated mammograms is shown in Figure 1. The 

DL model consisted of two input streams (one for the CC view and one for the MLO view) concatenated at a 

later stage in the model. Each stream started with an average pooling block to reduce the input dimension, 

followed by five blocks of 2D convolutions with ReLU activations, each followed by a max pooling layer. The 

last four of these five blocks were implemented with batch normalization before each 2D convolution. After 

these blocks, another batch normalization was applied, and the output flattened. The stream ends with six dense 

layers with ReLU activations, with a dropout layer (0.2) inserted for regularization after the first block. All 

convolutions were performed with kernel size 3 and stride 1, all pooling was performed with kernel size 2 and 

stride 2. 

Before the two streams were concatenated, three additional inputs were provided to each stream in the fully-

connected part of the model, before the last two fully-connected layers: the pixel sizes, in both directions (x, y), 

of the mammogram after resizing, and the compressed breast thickness (scalar value, equal to the distance 

between compression paddle and support table). These extra input parameters were supplied to provide 

information about the mammogram resolution (pixel size), and anatomy and, implicitly, used spectrum (breast 

thickness). The last layer of the model contained one node with linear activation for continuous density 

predictions. 

Figure 1: Schematic drawing of the DL model use for breast density estimation. 
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To train the model, the Adam optimizer was used with an 𝐿2-loss. Learning rate decay was implemented, with 

an initial learning rate of 0.001, and a decay factor of 0.5 after every 20 epochs. The DL model was trained with 

a batch size of 32 for 150 epochs in total. Only the training mammograms obtained by replicating geometry and 

settings of the Siemens Mammomat system were used to train the model. 

The results in density estimation on the test set mammograms were quantified using the median absolute error 

(mAE) and the corresponding interquartile range (IQR). These metrics were determined for four different 

density ranges: 1-15%, 15-25%, 25-60%, and >60%. Performance evaluation was performed on the 

mammograms kept for testing (and therefore not used for training or fine-tuning) simulated for both 

mammographic systems, without retraining the model (which was therefore only trained once for the Siemens 

Mammomat system). 

3. RESULTS 

The median breast density in the dataset of phantoms used in this study was 21.4%. The median breast thickness 

was 63.69 mm (range: 30.18-82.36 mm) for the CC cases and 59.48 mm (range: 26.91-81.74 mm) for the MLO 

cases. 

The median Dice similarity of the two U-Nets for the segmentation of the region of the mammogram with 

constant breast thickness portion in the test set mammograms was 0.962 (IQR: 0.033) and 0.959 (IQR: 0.025) 

for CC and MLO, respectively.  

Figure 2: Estimated vs. actual density for the training, validation, and test set. 

The estimated breast density for each sample in the training, validation, and test sets are plotted in Figure 2. For 

low breast densities, the same trend is present in all three sets. For densities higher than 50%, the model seems 

to suffer of a negative bias (Figure 2, panel c). This is explainable by the under-expression of cases with density 

higher than 50% in our dataset (10.0%), and the increased possibility of the absence of an adipose-only pixel 

for normalization.  

Table 1: Median Absolute Error and interquartile range for the test set, for the four density ranges. 

Density range (%) 1-15 15-25 25-60 >60 

Median Absolute Error (IQR) for Siemens system 

(%-point) 

3.3 

(IQR: 3.5) 

3.4  

(IQR: 2.5) 

3.5 

(IQR: 3.9) 

14.8 

(IQR: 8.4) 

Median Absolute Error (IQR) for Hologic system 

(%-point) 

4.5 

(IQR: 4.3) 

3.5 

(IQR: 3.6) 

3.4 

(IQR: 5.1) 

24.2 

(IQR: 17.6) 
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The test set mAE in density estimation was 3.6 percentage point (interquartile range: 3.4), and 3.7 (interquartile 

range: 5.3), respectively for the mammograms simulated with the Siemens and the Hologic system. Results for 

different density ranges, for both simulated systems, are reported in Table 1. 

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED 

To the best of our knowledge, an end-to-end framework for breast density estimation from simulated CC and 

MLO-view mammograms simultaneously, as developed in our study, has not been previously proposed. 

5. CONCLUSIONS 

In this work we presented a DL-based method to estimate breast density from simulated mammographic exams. 

The proposed method is fully automatic and can estimate breast density from simulated mammograms of 

different vendors accurately, without retraining. Unlike most previous studies [3]–[8], our approach was 

validated in terms of accuracy in breast density estimation against an objective ground truth, which was made 

possible thanks to using patient-based phantoms with known density obtained with breast CT. The difficulty of 

correctly estimating the density in cases with high breast density is probably due to two reasons. The first is the 

relatively few cases at high densities included in the dataset. The second is the higher possibility of the absence 

of an adipose-only pixel at higher breast densities. Of course, this study should be considered preliminary, due 

to limited dataset size, and the simplified simulations performed (only primary, non-scattered, x-rays and an 

ideal detector). However, due to the relatively large pixel size after resizing, the influence of noise and 

resolution loss should be low. Furthermore, the use of an anti-scatter grid in mammography should also limit 

the influence of scatter (or the lack thereof) on our results. Future work includes training and testing using a 

larger dataset, and the inclusion of the other factors contributing to the image generation in mammography 

simulations. It is desired to get this method to work on processed (i.e., “for presentation”) simulated 

mammograms however, as these processes are usually black boxes and vendor specific, this will be a difficult 

task and vendor cooperation will probably be needed. Ultimately, evaluation on real patient data is needed to 

prove if this method is accurate enough to be useful in the clinic.  

 

This work has not been previously submitted for presentation or publication elsewhere. 
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