3,050 research outputs found

    Rank ordering of questionnaire items using Wilks’s statistic: an example of application to three populations

    Get PDF
    Wilks’ test (1938) constitutes a major contribution to statistics and in practical applications. It is admittedly a classical method but even so it is of real interest because it is highly convenient to use. We hope to illustrate this in the following article by means of a study in the field of traffic psychology. In this demonstration, we start from a “characterization questionnaire” filled in by three populations of drivers and we test the population effect working from categorical data and 3-way tables. The differentiating power of the items is then examined and ranked in decreasing value. Through this example, we thus show the scope of Wilks’statistics and their highly general import with qualitative or category-specific data, compared with other techniques

    The effect of rotation and tidal heating on the thermal lightcurves of Super Mercuries

    Full text link
    Short period (<50 days) low-mass (<10Mearth) exoplanets are abundant and the few of them whose radius and mass have been measured already reveal a diversity in composition. Some of these exoplanets are found on eccentric orbits and are subjected to strong tides affecting their rotation and resulting in significant tidal heating. Within this population, some planets are likely to be depleted in volatiles and have no atmosphere. We model the thermal emission of these "Super Mercuries" to study the signatures of rotation and tidal dissipation on their infrared light curve. We compute the time-dependent temperature map at the surface and in the subsurface of the planet and the resulting disk-integrated emission spectrum received by a distant observer for any observation geometry. We calculate the illumination of the planetary surface for any Keplerian orbit and rotation. We include the internal tidal heat flow, vertical heat diffusion in the subsurface and generate synthetic light curves. We show that the different rotation periods predicted by tidal models (spin-orbit resonances, pseudo-synchronization) produce different photometric signatures, which are observable provided that the thermal inertia of the surface is high, like that of solid or melted rocks (but not regolith). Tidal dissipation can also directly affect the light curves and make the inference of the rotation more difficult or easier depending on the existence of hot spots on the surface. Infrared light curve measurement with the James Webb Space Telescope and EChO can be used to infer exoplanets' rotation periods and dissipation rates and thus to test tidal models. This data will also constrain the nature of the (sub)surface by constraining the thermal inertia.Comment: 15 pages, 13 figures, accepted for publication in Astronomy & Astrophysic

    Constraints on WIMP Dark Matter from the High Energy PAMELA pˉ/p\bar{p}/p data

    Get PDF
    A new calculation of the pˉ/p\bar{p}/p ratio in cosmic rays is compared to the recent PAMELA data. The good match up to 100 GeV allows to set constraints on exotic contributions from thermal WIMP dark matter candidates. We derive stringent limits on possible enhancements of the WIMP \pbar flux: a mWIMPm_{\rm WIMP}=100 GeV (1 TeV) signal cannot be increased by more than a factor 6 (40) without overrunning PAMELA data. Annihilation through the W+WW^+W^- channel is also inspected and cross-checked with e+/(e+e+)e^+/(e^-+e^+) data. This scenario is strongly disfavored as it fails to simultaneously reproduce positron and antiproton measurements.Comment: 5 pages, 5 figures, the bibliography has been updated, minor modifications have been made in the tex

    Sensitivity studies for the cubic-kilometre deep-sea neutrino telescope KM3NeT

    Full text link
    The observation of high-energy neutrinos from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. The sensitivity of different design options for a future cubic-kilometre scale neutrino telescope in the Mediterranean Sea is investigated for generic point sources and in particular for some of the galactic objects from which TeV gamma emmission has recently been observed by the H.E.S.S. atmospheric Cherenkov telescope. The effect of atmospheric background on the source detection probabilities has been taken into account through full simulation. The estimated event rates are compared to previous results and limits from present neutrino telescopes.Comment: 4 pages, 1 figure, contribution of the 30th International Cosmic Ray conferenc

    Variation of the X-ray non-thermal emission in the Arches cloud

    Full text link
    The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard X-rays. By probing the variability of the Arches cloud non-thermal emission in the most recent years, including a deep observation in 2012, we intend to discriminate between the two competing scenarios. We perform a spectral fit of XMM-Newton observations collected from 2000 to 2013 in order to build the Arches cloud lightcurve corresponding to both the neutral Fe Kalpha line and the X-ray continuum emissions. We reveal a 30% flux drop in 2012, detected with more than 4 sigma significance for both components. This implies that a large fraction of the studied non-thermal emission is due to the reflection of an X-ray transient source.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment

    Full text link
    [Abridged]. We take advantage of the galaxy-like 3D dark matter map extracted from the HORIZON Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extra-dimensional theories). Such a study is dedicated to a better estimate of the theoretical uncertainties affecting predictions, while the PAMELA and GLAST satellites are currently taking data which will soon provide better observational constraints. We discuss the predictions of the antiproton and positron fluxes, and of the positron fraction as well, as compared to the current data. We finally discuss the limits of the Nbody framework in describing the dark matter halo of our Galaxy.Comment: 19 pages, 9 figures. Backgrounds included and additional comments and figures on the positron fraction. Accepted for publication in PR

    Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells

    Full text link
    The principle of coherent Dicke narrowing in a thin vapour cell, in which sub-Doppler spectral lineshapes are observed under a normal irradiation for a l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the two wave vectors must be normal to the cell, making the two-photon scheme highly versatile. A comparison is provided between the Dicke narrowing with copropagating fields, and the residual Doppler-broadening occurring with counterpropagating geometries. The experimental feasibility is discussed on the basis of a first observation of a two-photon resonance in a 300 nm-thick Cs cell. Extension to the Raman situation is finally considered

    Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs

    Full text link
    Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to derive robust constraints on candidate relic particles. Here, we use an optimised spherical Jeans analysis to reconstruct the `astrophysical factor' for both annihilating and decaying dark matter in 21 known dSphs. Improvements with respect to previous works are: (i) the use of more flexible luminosity and anisotropy profiles to minimise biases, (ii) the use of weak priors tailored on extensive sets of contamination-free mock data to improve the confidence intervals, (iii) systematic cross-checks of binned and unbinned analyses on mock and real data, and (iv) the use of mock data including stellar contamination to test the impact on reconstructed signals. Our analysis provides updated values for the dark matter content of 8 `classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly linked to the sample size; the more flexible parametrisation we use results in changes compared to previous calculations. This translates into our ranking of potentially-brightest and most robust targets---viz., Ursa Minor, Draco, Sculptor---, and of the more promising, but uncertain targets---viz., Ursa Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is extremely sensitive to whether we include or exclude a few marginal member stars, making this target one of the most uncertain. Our analysis illustrates challenges that will need to be addressed when inferring the dark matter content of new `ultrafaint' satellites that are beginning to be discovered in southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material available on reques
    corecore