10 research outputs found

    A catalogue of oxygen-rich pulsating giants in the galactic halo and the Sagittarius stream

    Get PDF
    10 pages, 12 figs, 3 Tables. Accepted for publication by AAInternational audienceTo construct a catalogue of oxygen-rich (M) asymptotic giant branch (AGB) stars in the halo, complementing the catalogues of carbon-rich (C) stars, previous lists of Miras and SRa semi-regulars located in the northern hemisphere are merged and cleaned of various defects. After putting aside known C stars, characteristics such as colours and periods indicate that most of the remaining objects are M stars. Distances are obtained through the period-luminosity relation. By considering their position in the sky, stars lying at |Z| > 5 kpc are confirmed to be in majority in the Sgr tidal arms. The M stars are more numerous than C ones. Our distance scale is supported by two cool variables located in the Pal 4 globular cluster. Along the Sgr arms, there is reasonable agreement on distances of our objects with recent RR Lyrae distances. A few stars may be as distant as 150 kpc, with possibly four at the trailing arm apocentre, and two in the A16 sub-structure, angularly close to two C stars. Ninety radial velocities are collected from Gaia and other sources. A catalogue with 417 M pulsating AGB stars is provided. This catalogue contains ∼260 stars in the halo with |Z| > 5 kpc. Their Ks magnitudes range from 8 up to 13. For comparison, the catalogue also provides ∼150 stars in the disc having 5 <  Ks <  8

    A new approach based on equivalent LEFM

    No full text
    Glued-in-rods in timber structures lead to overcome the use of traditional bolted connections, preserve a large part of the original timber and offeraesthetic benefits. Several research programs were achieved to improve the mechanical knowledge of this technique, exhibiting experimentally the influence of materials and the effect of the geometric configuration. From these experimental results, some design rules predicting the axial strength are available, but a common criterion is still lacking. This paper relates to experimental investigations and finite element computations on glued-in rods, with the aim of providing a better knowledge about their mechanical behavior until failure. An experimental campaign is carried out on single glued-in rod connections. The finite element modeling reproduces the experimental configuration: it exhibits significant normal stress (to the interface)at the onset of the bonding, in comparison with shear stress. Within the framework of equivalent linear elastic fracture mechanics, resistance curves in mode I and mode II are established for each specimen. Finally, a mixed mode fracture criterion (I/II) is used to describe the fracture process zone development at the woodadhesive interface (failure zone). An analytical formulation is then proposed allowing the evaluation of peak load of each specimen, which highlights a new approach for the design of such connections

    Does Long-Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms?

    No full text
    International audienceThe availability of GPS survey data spanning 22 years, along with several independent velocity solutions including up to 16 years of permanent GPS data, presents a unique opportunity to search for persistent (and thus reliable) deformation patterns in the Western Alps, which in turn allow a reinterpretation of the active tectonics of this region. While GPS velocities are still too uncertain to be interpreted on an individual basis, the analysis of range-perpendicular GPS velocity profiles clearly highlights zones of extension in the center of the belt (15.3 to 3.1 nanostrain/year from north to south), with shortening in the forelands. The contrasting geodetic deformation pattern is coherent with earthquake focal mechanisms and related strain/stress patterns over the entire Western Alps. The GPS results finally provide a reliable and robust quantification of the regional strain rates. The observed vertical motions of 2.0 to 0.5 mm/year of uplift from north to south in the core of the Western Alps is interpreted to result from buoyancy forces related to postglacial rebound, erosional unloading, and/or viscosity anomalies in the crustal and lithospheric root. Spatial decorrelation between vertical and horizontal (seismicity related) deformation calls for a combination of processes to explain the complex present-day dynamics of the Western Alps

    Annuaire 2010-2011

    No full text

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA

    Performance of a proposed event-type based analysis for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts on the data acquired. These cuts, optimized using Monte Carlo simulations, select higher quality events from the initial dataset. Subsequent steps of the analysis typically use the surviving events to calculate one set of instrument response functions (IRFs). An alternative approach is the use of event types, as implemented in experiments such as the Fermi-LAT. In this approach, events are divided into sub-samples based on their reconstruction quality, and a set of IRFs is calculated for each sub-sample. The sub-samples are then combined in a joint analysis, treating them as independent observations. This leads to an improvement in performance parameters such as sensitivity, angular and energy resolution. Data loss is reduced since lower quality events are included in the analysis as well, rather than discarded. In this study, machine learning methods will be used to classify events according to their expected angular reconstruction quality. We will report the impact on CTA high-level performance when applying such an event-type classification, compared to the classical procedure

    Chasing Gravitational Waves with the Chereknov Telescope Array

    No full text
    Presented at the 38th International Cosmic Ray Conference (ICRC 2023), 2023 (arXiv:2309.08219)2310.07413International audienceThe detection of gravitational waves from a binary neutron star merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this gravitational wave event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100GeV) photons which have yet to be detected in coincidence with a gravitational wave signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. New observing modes and follow-up strategies are being developed for CTA to rapidly cover localization areas of gravitational wave events that are typically larger than the CTA field of view. This work will evaluate and provide estimations on the expected number of of gravitational wave events that will be observable with CTA, considering both on- and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA

    Annuaire 2007-2008

    No full text
    corecore