43 research outputs found

    Processes of Recruitment in the Sit-in Movement

    Full text link

    Parenting Styles and Home Obesogenic Environments

    Get PDF
    Parenting behaviors are known to have a major impact on childhood obesity but it has proven difficult to isolate the specific mechanism of influence. The present study uses Baumrind’s parenting typologies (authoritative, authoritarian, and permissive) to examine associations between parenting styles and parenting practices associated with childhood obesity. Data were collected from a diverse sample of children (n = 182, ages 7–10) in an urban school district in the United States. Parenting behaviors were assessed with the Parenting Styles and Dimension Questionnaire (PSDQ), a 58-item survey that categorizes parenting practices into three styles: authoritative, authoritarian, and permissive. Parent perceptions of the home obesogenic environment were assessed with the Family Nutrition and Physical Activity (FNPA) instrument, a simple 10 item instrument that has been shown in previous research to predict risk for overweight. Cluster analyses were used to identify patterns in the PSDQ data and these clusters were related to FNPA scores and measured BMI values in children (using ANCOVA analyses that controlled for parent income and education) to examine the impact of parenting styles on risk of overweight/obesity. The FNPA score was positively (and significantly) associated with scores on the authoritative parenting scale (r = 0.29) but negatively (and significantly) associated with scores on the authoritarian scale (r = −0.22) and permissive scale (r = −0.20). Permissive parenting was significantly associated with BMIz score but this is the only dimension that exhibited a relationship with BMI. A three-cluster solution explained 40.5% of the total variance and clusters were distinguishable by low and high z-scores on different PSDQ sub-dimensions. A cluster characterized as Permissive/Authoritarian (Cluster 2) had significantly lower FNPA scores (more obesogenic) than clusters characterized as Authoritative (Cluster 1) or Authoritarian/Authoritative (Cluster 3) after controlling for family income and parent education. No direct effects of cluster were evident on the BMI outcomes but the patterns were consistent with the FNPA outcomes. The results suggest that a permissive parenting style is associated with more obesogenic environments while an authoritative parenting style is associated with less obesogenic environments

    Major contribution of the type II beta carbonic anhydrase CanB (Cj0237) to the capnophilic growth phenotype of Campylobacter jejuni

    Get PDF
    Campylobacter jejuni, the leading cause of human bacterial gastroenteritis, requires low environmental oxygen and high carbon dioxide for optimum growth, but the molecular basis for the carbon dioxide requirement is unclear. One factor may be inefficient conversion of gaseous CO2 to bicarbonate, the required substrate of various carboxylases. Two putative carbonic anhydrases (CAs) are encoded in the genome of C. jejuni strain NCTC 11168 (Cj0229 and Cj0237). Here, we show that the deletion of the cj0237 (canB) gene alone prevents growth in complex media at low (1% v/v) CO2 and significantly reduces the growth rate at high (5% v/v) CO2. In minimal media incubated under high CO2, the canB mutant grew on L-aspartate but not on the key C3 compounds L-serine, pyruvate and L-lactate, showing that CanB is crucial in bicarbonate provision for pyruvate carboxylase-mediated oxaloacetate synthesis. Nevertheless, purified CanB (a dimeric, anion and acetazolamide sensitive, zinc-containing type II beta-class enzyme) hydrates CO2 actively only above pH 8 and with a high Km (∼34 mM). At typical cytoplasmic pH values and low CO2, these kinetic properties might limit intracellular bicarbonate availability. Taken together, our data suggest CanB is a major contributor to the capnophilic growth phenotype of C. jejuni

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Processes of Recruitment in the Sit-in Movement

    No full text
    corecore