5 research outputs found

    MYO9B polymorphisms in multiple sclerosis

    Get PDF
    "Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009""Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009""Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009"Peer reviewe

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS

    No full text
    Large case–control genome-wide association studies primarily expose common variants contributing to disease pathogenesis with modest effects. Thus, alternative strategies are needed to tackle rare, possibly more penetrant alleles. One strategy is to use special populations with a founder effect and isolation, resulting in allelic enrichment. For multiple sclerosis such a unique setting is reported in Southern Ostrobothnia in Finland, where the prevalence and familial occurrence of multiple sclerosis (MS) are exceptionally high. Here, we have studied one of the best replicated MS loci, 5p, and monitored for haplotypes shared among 72 regional MS cases, the majority of which are genealogically distantly related. The haplotype analysis over the 45 Mb region, covering the linkage peak identified in Finnish MS families, revealed only modest association at IL7R (P = 0.04), recently implicated in MS, whereas most significant association was found with one haplotype covering the C7-FLJ40243 locus (P = 0.0001), 5.1 Mb centromeric of IL7R. The finding was validated in an independent sample from the isolate and resulted in an odds ratio of 2.73 (P = 0.000003) in the combined data set. The identified relatively rare risk haplotype contains C7 (complement component 7), an important player of the innate immune system. Suggestive association with alleles of the region was seen also in more heterogeneous populations. Interestingly, also the complement activity correlated with the identified risk haplotype. These results suggest that the MS predisposing locus on 5p is more complex than assumed and exemplify power of population isolates in the identification of rare disease alleles

    Genome-wide Association Study in a High-Risk Isolate for Multiple Sclerosis Reveals Associated Variants in STAT3 Gene

    Get PDF
    Genetic risk for multiple sclerosis (MS) is thought to involve both common and rare risk alleles. Recent GWAS and subsequent meta-analysis have established the critical role of the HLA locus and identified new common variants associated to MS. These variants have small odds ratios (ORs) and explain only a fraction of the genetic risk. To expose potentially rare, high-impact alleles, we conducted a GWAS of 68 distantly related cases and 136 controls from a high-risk internal isolate of Finland with increased prevalence and familial occurrence of MS. The top 27 loci with p < 10−4 were tested in 711 cases and 1029 controls from Finland, and the top two findings were validated in 3859 cases and 9110 controls from more heterogeneous populations. SNP (rs744166) within the STAT3 gene was associated to MS (p = 2.75 × 10−10, OR 0.87, confidence interval 0.83–0.91). The protective haplotype for MS in STAT3 is a risk allele for Crohn disease, implying that STAT3 represents a shared risk locus for at least two autoimmune diseases. This study also demonstrates the potential of special isolated populations in search for variants contributing to complex traits

    Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls

    Get PDF
    Multiple sclerosis (MS) is an inflammatory CNS disease with a substantial genetic component, originally mapped to only the human leukocyte antigen (HLA) region. In the last 5 years, a total of seven genome-wide association studies and one meta-analysis successfully identified 57 non-HLA susceptibility loci. Here, we merged nominal statistical evidence of association and physical evidence of interaction to conduct a protein-interaction-network-based pathway analysis (PINBPA) on two large genetic MS studies comprising a total of 15,317 cases and 29,529 controls. The distribution of nominally significant loci at the gene level matched the patterns of extended linkage disequilibrium in regions of interest. We found that products of genome-wide significantly associated genes are more likely to interact physically and belong to the same or related pathways. We next searched for subnetworks (modules) of genes (and their encoded proteins) enriched with nominally associated loci within each study and identified those modules in common between the two studies. We demonstrate that these modules are more likely to contain genes with bona fide susceptibility variants and, in addition, identify several high-confidence candidates (including BCL10, CD48, REL, TRAF3, and TEC). PINBPA is a powerful approach to gaining further insights into the biology of associated genes and to prioritizing candidates for subsequent genetic studies of complex traits
    corecore