98 research outputs found

    GraviDy, a GPU modular, parallel direct-summation N-body integrator: Dynamics with softening

    Get PDF
    A wide variety of outstanding problems in astrophysics involve the motion of a large number of particles (N106N\gtrsim 10^{6}) under the force of gravity. These include the global evolution of globular clusters, tidal disruptions of stars by a massive black hole, the formation of protoplanets and the detection of sources of gravitational radiation. The direct-summation of NN gravitational forces is a complex problem with no analytical solution and can only be tackled with approximations and numerical methods. To this end, the Hermite scheme is a widely used integration method. With different numerical techniques and special-purpose hardware, it can be used to speed up the calculations. But these methods tend to be computationally slow and cumbersome to work with. Here we present a new GPU, direct-summation NN-body integrator written from scratch and based on this scheme. This code has high modularity, allowing users to readily introduce new physics, it exploits available high-performance computing resources and will be maintained by public, regular updates. The code can be used in parallel on multiple CPUs and GPUs, with a considerable speed-up benefit. The single GPU version runs about 200 times faster compared to the single CPU version. A test run using 4 GPUs in parallel shows a speed up factor of about 3 as compared to the single GPU version. The conception and design of this first release is aimed at users with access to traditional parallel CPU clusters or computational nodes with one or a few GPU cards

    Intensidad de lo Posible, o del sentido y la decisión

    Get PDF
    RESUMENporque somos finitos, porque hay límite, hay sentido. Asimismo, en la medida que precisamente somos, constituyendo tal límite, hay comunidad. Aquello que la configura es el despliegue del sentido. Con lo del sentido, lo que se aborda aquí es la esencia de una misma comunidad, una comunidad sin nombre. En este trabajo se revela la intensidad de su despliegue, en su cierre (Schmitt) y apertura (Derrida).PALABRAS CLAVESentido, finitud, decisión, Schmitt, DerridaABSTRACTBecause we are finite, because there is limit, there is sense. Likewise, insofar as we are precisely, constituting such limit, there is community. It is the display of sense what forms it. With the sense issue, what we approach here is the essence of a community itself, a community without name. In this work we disclose the intensity of its display, in its closing (Schmitt) and opening (Derrida).KEYWORDSSense, finiteness, decision, Schmitt, Derrid

    The High Cadence Transit Survey (HiTS): Compilation and Characterization of Light-curve Catalogs

    Get PDF
    Indexación: Scopus.J.M. acknowledges support from CONICYT-Chile through CONICYT-PCHA/Doctorado-Nacional/2014-21140892. J.M., F.F., G.C.V., and G.M. acknowledge support from the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to the Millennium Institute of Astrophysics (MAS). F.F. acknowledges support from Conicyt through the Fondecyt Initiation into Research project No. 11130228. J.M., F.F., J.S.M., G.C.V., and S.G. acknowledge support from Basal Project PFB-03, Centro de Modelamiento Matemáico (CMM), Universidad de Chile. P.L. acknowledges support by Fondecyt through project #1161184. G.C.V. gratefully acknowledges financial support from CON-ICYT-Chile through FONDECYT postdoctoral grant number 3160747 and CONICYT-Chile and NSF through the Programme of International Cooperation project DPI201400090. P.H. acknowledges support from FONDECYT through grant 1170305. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. G.M. acknowledges support from Conicyt through CONICYT-PCHA/Magís-terNacional/2016-22162353. Support for T.d.J. has been provided by US NSF grant AST-1211916, the TABASGO Foundation, and Gary and Cynthia Bengier. R.R.M. acknowledges partial support from BASAL Project PFB-06, as well as FONDECYT project N◦1170364. Powered@NLHPC: this research was supported by the High Performance Computing infrastructure of the National Laboratory for High Performance Computing (NLHPC), PIA ECM-02, CONICYT. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaborating institutions: Argonne National Lab, the University of California Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologi-cas-Madrid, the University of Chicago, University College London, the DES-Brazil consortium, the University of Edinburgh, ETH-Zurich, the University of Illinois at Urbana-Champaign, Institut de Ciencies de l’Espai, Institut de Fisica d’Altes Energies, Lawrence Berkeley National Lab, Ludwig-Maximilians Universitat, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Lab, Stanford University, the University of Sussex, and Texas A&M University. Funding for DES, including DECam, has been provided by the U.S. Department of Energy, National Science Foundation, Ministry of Education and Science (Spain), Science and Technology Facilities Council (UK), Higher Education Funding Council (England), National Center for Supercomputing Applications, Kavli Institute for Cosmological Physics, Financia-dora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo a Pesquisa, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência e Tecnologia (Brazil), the German Research Foundation-sponsored cluster of excellence “Origin and Structure of the universe,” and the DES collaborating institutions. Facility: CTIO:1.5 m (DECam).The High Cadence Transient Survey (HiTS) aims to discover and study transient objects with characteristic timescales between hours and days, such as pulsating, eclipsing, and exploding stars. This survey represents a unique laboratory to explore large etendue observations from cadences of about 0.1 days and test new computational tools for the analysis of large data. This work follows a fully data science approach, from the raw data to the analysis and classification of variable sources. We compile a catalog of ∼15 million object detections and a catalog of ∼2.5 million light curves classified by variability. The typical depth of the survey is 24.2, 24.3, 24.1, and 23.8 in the u, g, r, and i bands, respectively. We classified all point-like nonmoving sources by first extracting features from their light curves and then applying a random forest classifier. For the classification, we used a training set constructed using a combination of cross-matched catalogs, visual inspection, transfer/active learning, and data augmentation. The classification model consists of several random forest classifiers organized in a hierarchical scheme. The classifier accuracy estimated on a test set is approximately 97%. In the unlabeled data, 3485 sources were classified as variables, of which 1321 were classified as periodic. Among the periodic classes, we discovered with high confidence one δ Scuti, 39 eclipsing binaries, 48 rotational variables, and 90 RR Lyrae, and for the nonperiodic classes, we discovered one cataclysmic variable, 630 QSOs, and one supernova candidate. The first data release can be accessed in the project archive of HiTS (http://astro.cmm.uchile.cl/HiTS/). © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-3881/aadfd

    Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells

    Get PDF
    Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms

    Orbital and Mass Constraints of the Young Binary System IRAS 16293-2422 A

    Get PDF
    We present 3 mm ALMA continuum and line observations at resolutions of 6.5 au and 13 au, respectively, toward the Class 0 system IRAS 16293-2422 A. The continuum observations reveal two compact sources toward IRAS 16293-2422 A, coinciding with compact ionized gas emission previously observed at radio wavelengths (A1 and A2), confirming the long-known radio sources as protostellar. The emission toward A2 is resolved and traces a dust disk with an FWHM size of ~12 au, while the emission toward A1 sets a limit to the FWHM size of the dust disk of ~4 au. We also detect spatially resolved molecular kinematic tracers near the protostellar disks. Several lines of the J = 5 124 rotational transition of HNCO, NH2CHO, and t-HCOOH are detected, with which we derived individual line-of-sight velocities. Using these together with the CS (J = 2 121), we fit Keplerian profiles toward the individual compact sources and derive masses of the central protostars. The kinematic analysis indicates that A1 and A2 are a bound binary system. Using this new context for the previous 30 yr of Very Large Array observations, we fit orbital parameters to the relative motion between A1 and A2 and find that the combined protostellar mass derived from the orbit is consistent with the masses derived from the gas kinematics. Both estimations indicate masses consistently higher (0.5 lesssim M 1 lesssim M 2 lesssim 2 Modot{M}_{odot }) than previous estimations using lower-resolution observations of the gas kinematics. The ALMA high-resolution data provides a unique insight into the gas kinematics and masses of a young deeply embedded bound binary system

    MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    Full text link
    We present MUSE integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z=0.0206z=0.0206, D90D\simeq 90 Mpc) and best-studied tidal disruption events (TDE), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to 10\gtrsim 10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O III] λ\lambda5007, [N II] λ\lambda6584, and Hα\alpha emission lines. The total off nuclear [O III] λ\lambda5007 luminosity is luminosity is 4.7×10394.7\times 10^{39} erg s1^{-1} and the ionized H mass is 104(500/ne)M\rm \sim 10^4(500/n_e)\,M_{\odot}. Based on the BPT diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization "cones" around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black-hole binaries.Comment: Accepted for publication in ApJ

    THE HIGH CADENCE TRANSIENT SURVEY (HITS). I. SURVEY DESIGN AND SUPERNOVA SHOCK BREAKOUT CONSTRAINTS

    Get PDF
    Indexación: Web of Science; Scopus.We present the first results of the High Cadence Transient Survey (HiTS), a survey for which the objective is to detect and follow-up optical transients with characteristic timescales from hours to days, especially the earliest hours of supernova (SN) explosions. HiTS uses the Dark Energy Camera and a custom pipeline for image subtraction, candidate filtering and candidate visualization, which runs in real-time to be able to react rapidly to the new transients. We discuss the survey design, the technical challenges associated with the real-time analysis of these large volumes of data and our first results. In our 2013, 2014, and 2015 campaigns, we detected more than 120 young SN candidates, but we did not find a clear signature from the short-lived SN shock breakouts (SBOs) originating after the core collapse of red supergiant stars, which was the initial science aim of this survey. Using the empirical distribution of limiting magnitudes from our observational campaigns, we measured the expected recovery fraction of randomly injected SN light curves, which included SBO optical peaks produced with models from Tominaga et al. (2011) and Nakar & Sari (2010). From this analysis, we cannot rule out the models from Tominaga et al. (2011) under any reasonable distributions of progenitor masses, but we can marginally rule out the brighter and longer-lived SBO models from Nakar & Sari (2010) under our best-guess distribution of progenitor masses. Finally, we highlight the implications of this work for future massive data sets produced by astronomical observatories, such as LSST.http://iopscience.iop.org/article/10.3847/0004-637X/832/2/155/meta;jsessionid=76BDFFFE378003616F6DBA56A9225673.c4.iopscience.cld.iop.or

    Probing Structure in Cold Gas at z1z \lesssim 1 with Gravitationally Lensed Quasar Sight Lines

    Full text link
    Absorption spectroscopy of gravitationally lensed quasars (GLQs) enables study of spatial variations in the interstellar and/or circumgalactic medium of foreground galaxies. We report observations of 4 GLQs, each with two images separated by 0.8-3.0", that show strong absorbers at redshifts 0.4<<zabsz_{abs}<<1.3 in their spectra, including some at the lens redshift with impact parameters 1.5-6.9 kpc. We measure H I Lyman lines along two sight lines each in five absorbers (10 sight lines in total) using HST STIS, and metal lines using Magellan Echellette or Sloan Digital Sky Survey. Our data have doubled the lens galaxy sample with measurements of H I column densities (NHIN_{\rm H I}) and metal abundances along multiple sight lines. Our data, combined with the literature, show no strong correlation between absolute values of differences in NHIN_{\rm H I}, NFeIIN_{\rm Fe II}, or [Fe/H] and the sight line separations at the absorber redshifts for separations of 0-8 kpc. The estimated abundance gradients show a tentative anti-correlation with abundances at galaxy centers. Some lens galaxies show inverted gradients, possibly suggesting central dilution by mergers or infall of metal-poor gas. [Fe/H] measurements and masses estimated from GLQ astrometry suggest the lens galaxies lie below the total mass-metallicity relation for early-type galaxies as well as measurements for quasar-galaxy pairs and gravitationally lensed galaxies at comparable redshifts. This difference may arise in part from the dust depletion of Fe. Higher resolution measurements of H and metals (especially undepleted elements) for more GLQ absorbers and accurate lens redshifts are needed to confirm these trends.Comment: 59 pages, 18 figures, accepted for publication in the Astrophysical Journa
    corecore