937 research outputs found

    Compton Echoes from Gamma-ray Bursts

    Get PDF
    Recent observations of gamma-ray bursts (GRBs) have provided growing evidence for collimated outflows and emission, and strengthened the connection between GRBs and supernovae. If massive stars are the progenitors of GRBs, the hard photon pulse will propagate in the pre-burst, dense environment. Circumstellar material will Compton scatter the prompt GRB radiation and give rise to a reflection echo. We calculate luminosities, spectra, and light curves of such Compton echoes in a variety of emission geometries and ambient gas distributions, and show that the delayed hard X-ray flash from a pulse propagating into a red supergiant wind could be detectable by Swift out to z~0.2. Independently of the gamma-ray spectrum of the prompt burst, reflection echoes will typically show a high-energy cutoff between m_ec^2/2 and m_ec^2 because of Compton downscattering. At fixed burst energy per steradian, the luminosity of the reflected echo is proportional to the beaming solid angle, Omega_b, of the prompt pulse, while the number of bright echoes detectable in the sky above a fixed limiting flux increases as Omega_b^{1/2}, i.e. it is smaller in the case of more collimated jets. The lack of an X-ray echo at one month delay from the explosion poses severe constraints on the possible existence of a lateral GRB jet in SN 1987A. The late r-band afterglow observed in GRB990123 is fainter than the optical echo expected in a dense red supergiant environment from a isotropic prompt optical flash. Significant MeV delayed emission may be produced through the bulk Compton (or Compton drag) effect resulting from the interaction of the decelerating fireball with the scattered X-ray radiation.Comment: LaTeX, 18 pages, 4 figures, revised version accepted for publication in the Ap

    Understanding the Impact of Learning Community Support for STEM students with Low Mathematics Placement

    Get PDF
    As a residential college within Michigan State University that focuses on STEM fields, Lyman Briggs College developed a STEM learning community to support students with low mathematics placement test scores, the Instilling Quantitative and Integrative Reasoning program (INQUIRE). INQUIRE serves some of those students considered historically at-risk based on STEM retention and graduation rates. INQUIRE was developed as learning community using curricular design, cohort-building activities, and academic resources to assist students’ transition to college. Participating students were surveyed to understand the student experience of INQUIRE. Students’ responses indicated that the program helped them adjust to college, prepare for introductory STEM courses, collaborate with other students and faculty, and experience academic and personal growth. A few students (4%) stated that the program put them behind their peers. Quantitatively, four-year STEM retention showed an increase from 43 to 56% for students starting in college-level algebra but remained statistically unchanged for those beginning in pre-college algebra (moving from 31 to 37%). The six-year graduation rates for both groups remained unchanged. These results indicate the difficulty in improving the graduation rates of students with low mathematics placement but indicate that INQUIRE made a positive and meaningful impact on students’ experience

    OSSE spectral analysis techniques

    Get PDF
    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies

    Mutual Zonated Interactions of Wnt and Hh Signaling Are Orchestrating the Metabolism of the Adult Liver in Mice and Human

    No full text
    The Hedgehog (Hh) and Wnt/ÎČ-Catenin (Wnt) cascades are morphogen pathways whose pronounced influence on adult liver metabolism has been identified in recent years. How both pathways communicate and control liver metabolic functions are largely unknown. Detecting core components of Wnt and Hh signaling and mathematical modeling showed that both pathways in healthy liver act largely complementary to each other in the pericentral (Wnt) and the periportal zone (Hh) and communicate mainly by mutual repression. The Wnt/Hh module inversely controls the spatiotemporal operation of various liver metabolic pathways, as revealed by transcriptome, proteome, and metabolome analyses. Shifting the balance to Wnt (activation) or Hh (inhibition) causes pericentralization and periportalization of liver functions, respectively. Thus, homeostasis of the Wnt/Hh module is essential for maintaining proper liver metabolism and to avoid the development of certain metabolic diseases. With caution due to minor species-specific differences, these conclusions may hold for human liver as well

    Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol

    Get PDF
    Citation: Laverty, J. T., Underwood, S. M., Matz, R. L., Posey, L. A., Carmel, J. H., Caballero, M. D., . . . Cooper, M. M. (2016). Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol. Plos One, 11(9), 21. doi:10.1371/journal.pone.0162333Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not

    Observations of GRB 990123 by the Compton Gamma-Ray Observatory

    Get PDF
    GRB 990123 was the first burst from which simultaneous optical, X-ray and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical and X-ray observations. We have studied the gamma-ray burst itself as observed by the CGRO detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations, and the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fit by the standard four-parameter GRB function, with the exception that excess emission compared to this function is observed below ~15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the nu f_nu spectrum, E_p, reaches an unusually high value during the first intensity spike, 1470 +/- 110 keV, and then falls to \~300 keV during the tail of the burst. The high-energy spectrum above ~MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE, clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power-law. Using the redshift value of >= 1.61 and assuming isotropic emission, the gamma-ray fluence exceeds 10E54 ergs.Comment: Submitted to The Astrophysical Journal. 16 pages including 4 figure

    Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

    Get PDF
    Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΊKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations

    Influence of Exercise Modality on Cerebral-Ocular Hemodynamics and Pressures

    Get PDF
    Background: Moderate and high intensity aerobic or resistance exercise has clearly identified benefits for cardiac, muscle, and bone health. However, the impact of such exercise - either as a mitigating or an exacerbating factor - on the development of the visual impairment and intracranial pressure syndrome (VIIP) is unknown. Accordingly, our aim was to characterize the effect of an acute bout of resistance (RE), moderate-intensity continuous (CE), and high-intensity interval exercise (IE) during a cephalad fluid shift on cerebral-ocular hemodynamics and pressures. Methods: 10 male subjects (36 plus or minus 9 years) completed 4 testing days in a 15 degree head-down tilt (HDT): (1) assessment of maximum volume of O (sub 2), (2) RE session (4 sets of 12 repetition maximum leg press exercise), (3) CE session (30 minutes of cycling at 60 percent maximum volume of O (sub 2)), and (4) IE session (4 by 4-minute intervals of exercise at 85 percent maximum volume of O (sub 2) with 3-minute active rest periods). During each session, blood flow (Vivid-e, GE Healthcare) in extracranial arteries (common carotid artery, CCA; internal carotid artery, ICA; external carotid artery, ECA and vertebral artery, VA), and mean blood flow velocity in middle cerebral artery (MCA), internal jugular pressure (IJP; VeinPress), and intraocular pressure (IOP; Icare PRO) were measured at rest, at the end of each resistance or interval set, and every 5 minutes during continuous exercise. Translaminar pressure gradient (TLPG) was estimated by subtracting IJP from IOP. Results: There were no differences across days in pre-exercise resting blood flows or pressures. IOP decreased slightly from HDT rest (20.2 plus or minus 2.3 millimeters of mercury) to exercise (RE: 19.2 plus or minus 2.8 millimeters of mercury; CE: 18.9 plus or minus 3.2 millimeters of mercury; IE: 20.1 plus or minus 2.8 millimeters of mercury), while IJP decreased during CE (31.6 plus or minus 9.5 millimeters of mercury) and RE (32.0 plus or minus 8.1 millimeters of mercury), and increased during IE (35.1 plus or minus 9.5 millimeters of mercury) from HDT rest (33.3 plus or minus 6.5 millimeters of mercury). Estimated TLPG was increased during IE only. Compared to RE and CE, IE resulted in the greatest increase in MCA blood flow velocity and extracranial artery blood flow. Conclusions: These preliminary results suggest that high-intensity IE acutely increases cerebral blood flow, IJP, and TLPG. Alterations in TLPG is one mechanism that may contribute to optic nerve sheath edema in astronauts. Accordingly, acutely raising IOP and/or orbital pressure during exercise could optimize cerebral-ocular pressures during spaceflight

    Gamma Radiation from PSR B1055-52

    Full text link
    The telescopes on the Compton Gamma Ray Observatory (CGRO) have observed PSR B1055-52 a number of times between 1991 and 1998. From these data, a more detailed picture of the gamma radiation from this source has been developed, showing several characteristics which distinguish this pulsar: the light curve is complex; there is no detectable unpulsed emission; the energy spectrum is flat, with no evidence of a sharp high-energy cutoff up to >4 GeV. Comparisons of the gamma-ray data with observations at longer wavelengths show that no two of the known gamma-ray pulsars have quite the same characteristics; this diversity make s interpretation in terms of theoretical models difficult.Comment: 31 pages, 5 figures and 1 separate table, accepted for publication in Ap
    • 

    corecore