32 research outputs found

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores

    No full text
    Detection of epigenetic markers, including 5-methylcytosine, is crucial due to their role in gene expression regulation and due to the mounting evidence of aberrant DNA methylation patterns in cancer biogenesis. Single-molecule methods to date have primarily been focused on hypermethylation detection; however, many oncogenes are hypomethylated during cancer development, presenting an important unmet biosensing challenge. To this end, we have developed a labeling and single-molecule quantification method for multiple unmethylated cytosine–guanine dinucleotides (CpGs). Our method involves a single-step covalent coupling of DNA with synthetic cofactor analogues using DNA methyltransferases (MTases) followed by molecule-by-molecule electro-optical nanopore detection and quantification with single or multiple colors. This sensing method yields a calibrated scale to directly quantify the number of unmethylated CpGs in the target sequences of each DNA molecule. Importantly, our method can be used to analyze ∼10 kbp long double-stranded DNA while circumventing PCR amplification or bisulfite conversion. Expanding this technique to use two colors, as demonstrated here, would enable sensing of multiple DNA MTases through orthogonal labeling/sensing of unmethylated CpGs (or other epigenetic modifications) associated with specific recognition sites. Our proof-of-principle study may permit sequence-specific, direct targeting of clinically relevant hypomethylated sites in the genome

    Ionic Current-Based Mapping of Short Sequence Motifs in Single DNA Molecules Using Solid-State Nanopores

    No full text
    Nanopore sensors show great potential for rapid, single-molecule determination of DNA sequence information. Here, we develop an ionic current-based method for determining the positions of short sequence motifs in double-stranded DNA molecules with solid-state nanopores. Using the DNA-methyltransferase M.TaqI and a biotinylated S-adenosyl-l-methionine cofactor analogue we create covalently attached biotin labels at 5′-TCGA-3′ sequence motifs. Monovalent streptavidin is then added to bind to the biotinylated sites giving rise to additional current blockade signals when the DNA passes through a conical quartz nanopore. We determine the relationship between translocation time and position along the DNA contour and find a minimum resolvable distance between two labeled sites of ∼200 bp. We then characterize a variety of DNA molecules by determining the positions of bound streptavidin and show that two short genomes can be simultaneously detected in a mixture. Our method provides a simple, generic single-molecule detection platform enabling DNA characterization in an electrical format suited for portable devices for potential diagnostic applications

    The N6-Position of Adenine Is a Blind Spot for TAL-Effectors That Enables Effective Binding of Methylated and Fluorophore-Labeled DNA

    No full text
    Transcription-activator-like effectors (TALEs) are programmable DNA binding proteins widely used for genome targeting. TALEs consist of multiple concatenated repeats, each selectively recognizing one nucleobase <i>via</i> a defined repeat variable diresidue (RVD). Effective use of TALEs requires knowledge about their binding ability to epigenetic and other modified nucleobases occurring in target DNA. However, aside from epigenetic cytosine-5 modifications, the binding ability of TALEs to modified DNA is unknown. We here study the binding of TALEs to the epigenetic nucleobase N6-methyladenine (6mA) found in prokaryotic and recently also eukaryotic genomes. We find that the natural, adenine (A)-binding RVD NI is insensitive to 6mA. Model-assisted structure–function studies reveal accommodation of 6mA by RVDs with altered hydrophobic surfaces and abilities of hydrogen bonding to the N6-amino group or N7 atom of A. Surprisingly, this tolerance of N6 substitution was transferrable to bulky N6-alkynyl substituents usable for click chemistry and even to a large rhodamine dye, establishing the N6 position of A as the first site of DNA that offers label introduction within TALE target sites without interference. These findings will guide future <i>in vivo</i> studies with TALEs and expand their applicability as DNA capture probes for analytical applications <i>in vitro</i>
    corecore