3,134 research outputs found
Modelica - A Language for Physical System Modeling, Visualization and Interaction
Modelica is an object-oriented language for modeling of large, complex and heterogeneous physical systems. It is suited for multi-domain modeling, for example for modeling of mechatronics including cars, aircrafts and industrial robots which typically consist of mechanical, electrical and hydraulic subsystems as well as control systems. General equations are used for modeling of the physical phenomena, No particular variable needs to be solved for manually. A Modelica tool will have enough information to do that automatically. The language has been designed to allow tools to generate efficient code automatically. The modeling effort is thus reduced considerably since model components can be reused and tedious and error-prone manual manipulations are not needed. The principles of object-oriented modeling and the details of the Modelica language as well as several examples are presented
Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas
We derive a closed form expression for the quantum corrections to the kinetic
energy density (KED) in the Thomas-Fermi (TF) limit of a linear potential model
system in three dimensions (the Airy gas). The universality of the expression
is tested numerically in a number of three dimensional model systems: (i)
jellium surfaces, (ii) hydrogen-like potentials, (iii) systems confined by an
harmonic potential in one and (iv) all three dimensions, and (v) a system with
a cosine potential (the Mathieu gas). Our results confirm that the usual
gradient expansion of extended Thomas-Fermi theory (ETF) does not describe the
quantum oscillations for systems that incorporate surface regions where the
electron density drops off to zero. We find that the correction derived from
the Airy gas is universally applicable to relevant spatial regions of systems
of type (i), (ii), and (iv), but somewhat surprisingly not (iii). We discuss
possible implications of our findings to the development of functionals for the
kinetic energy density.Comment: 15 pages, 9 figure
Discovery of stars surrounded by iron dust in the LMC
We consider a small sample of oxygen-rich, asymptotic giant branch stars in
the Large Magellanic Cloud, observed by the Spitzer Space Telescope, exhibiting
a peculiar spectral energy distribution, which can be hardly explained by the
common assumption that dust around AGB stars is primarily composed of silicate
grains. We suggest that this uncommon class of objects are the progeny of a
metal-poor generation of stars, with metallicity ,
formed Myr ago. The main dust component in the circumstellar
envelope is solid iron. In these stars the poor formation of silicates is set
by the strong nucleosynthesis experienced at the base of the envelope, which
provokes a scarcity of magnesium atoms and water molecules, required to the
silicate formation. The importance of the present results to interpret the data
from the incoming James Webb Space Telescope is also discussed.Comment: Accepted for publication in ApJ Letter on 9 January 201
On the physics of frequency domain controlled source electromagnetics in shallow water, 2: transverse anisotropy
Author Posting. © The Authors, 2017. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 211 (2017): 1046–1061, doi:10.1093/gji/ggx360.In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically-polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the sub-seafloor conductivity that is assumed to be transversely anisotropic, with a vertical-to-horizontal resistivity ratio of 3:1. For an ocean whose electrical thickness is comparable to that of the overburden, the seafloor electromagnetic response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a halfspace, or a stronger and faster response, and displays little to no evidence for the air interaction. For an ocean whose electrical thickness is much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets, and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. By comparison to the isotropic case with the same horizontal conductivity, transverse anisotropy stretches the Poynting vector and the electric field response from a thin resistive layer to much longer offsets. These phenomena can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire sub-seafloor resistivity structure with the sea surface. The Fréchet derivatives are dominated by preferential sensitivity to the vertical conductivity in the reservoir layer and overburden at short offsets. The horizontal conductivity Fréchet derivatives are weaker than to comparable to the vertical derivatives at long offsets in the substrate. This means that the sensitivity to the horizontal conductivity is present in the shallow parts of the subsurface. In the presence of transverse anisotropy, it is necessary to go to higher frequencies to sense the horizontal conductivity in the overburden as compared to an isotropic model with the same horizontal conductivity. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.This work was supported at WHOI by an Independent Research and Development award, and by the Walter A. and Hope Noyes Smith Chair for Excellence in Oceanography
On the physics of frequency-domain controlled source electromagnetics in shallow water. 1: isotropic conductivity
Author Posting. © The Authors, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 208 (2017): 1026-1042, doi:10.1093/gji/ggw435.In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field
The three-electron bond =Si<O<sub>2</sub>:·Yb absorption center of pre-darkened ytterbium-doped silica
Voluminous lava flows at Oldoinyo Lengai in 2006: chronology of events and insights into the shallow magmatic system
Zero-temperature responses of a 3D spin glass in a field
We probe the energy landscape of the 3D Edwards-Anderson spin glass in a
magnetic field to test for a spin glass ordering. We find that the spin glass
susceptibility is anomalously large on the lattice sizes we can reach. Our data
suggest that a transition from the spin glass to the paramagnetic phase takes
place at B_c=0.65, though the possibility B_c=0 cannot be excluded. We also
discuss the question of the nature of the putative frozen phase.Comment: RevTex, 4 pages, 4 figures, clarifications and added reference
New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions
We construct new, efficient, and accurate high-order finite differencing
operators which satisfy summation by parts. Since these operators are not
uniquely defined, we consider several optimization criteria: minimizing the
bandwidth, the truncation error on the boundary points, the spectral radius, or
a combination of these. We examine in detail a set of operators that are up to
tenth order accurate in the interior, and we surprisingly find that a
combination of these optimizations can improve the operators' spectral radius
and accuracy by orders of magnitude in certain cases. We also construct
high-order dissipation operators that are compatible with these new finite
difference operators and which are semi-definite with respect to the
appropriate summation by parts scalar product. We test the stability and
accuracy of these new difference and dissipation operators by evolving a
three-dimensional scalar wave equation on a spherical domain consisting of
seven blocks, each discretized with a structured grid, and connected through
penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the
derivative and dissipation operators can be accessed by downloading the
source code for the document. The files are located in the "coeffs"
subdirector
- …
