
Modelica — A Language for Physical System Modeling,
Visualization and Interaction

Hilding Elmqvist
Dynasim AB

Research Park Ideon
SE-223 70 Lund, Sweden

E-mail: Elmqvist@Dynasim.se

Sven Erik Mattsson
Dynasim AB

Research Park Ideon
SE-223 70 Lund, Sweden

E-mail: SvenErik@Dynasim.se

Martin Otter
DLR Oberpfaffenhofen

D-82230 Wessling, Germany
E-mail: Martin.Otter@DLR.de

Abstract
Modelica is an object-oriented language for modeling
of large, complex and heterogeneous physical systems.
It is suited for multi-domain modeling, for example for
modeling of mechatronics including cars, aircrafts and
industrial robots which typically consist of mechanical,
electrical and hydraulic subsystems as well as control
systems. General equations are used for modeling
of the physical phenomena. No particular variable
needs to be solved for manually. A Modelica tool will
have enough information to do that automatically. The
language has been designed to allow tools to generate
efficient code automatically. The modeling effort is
thus reduced considerably since model components
can be reused and tedious and error-prone manual
manipulations are not needed. The principles of object-
oriented modeling and the details of the Modelica
language as well as several examples are presented.

1. Introduction

Modeling and simulation are becoming more impor-
tant since engineers need to analyse increasingly com-
plex systems composed of components from different
domains. Examples are mechatronic systems within
automotive, aerospace and robotics applications. Such
systems are composed of components from domains
like electrical, mechanical, hydraulical, control, etc.
Current tools are generally weak in treating multi-
domain models because the general tools are block-
oriented and thus demand a huge amount of man-
ual rewriting to get the equations into explicit form.
The domain-specific tools, such as circuit simulators
or multibody programs, cannot handle components of
other domains in a reasonable way.

There is too large a gap between the user’s problem
and the model description that the simulation pro-
gram understands. Modeling should be much closer to
the way an engineer builds a real system, first trying
to find standard components like motors, pumps and

valves from manufacturers’ catalogues with appropri-
ate specifications and interfaces.

In Modelica equations are used for modeling of the
physical phenomena. No particular variable needs
to be solved for manually. A Modelica tool will
have enough information to decide that automati-
cally. This is an important property of Modelica to en-
able handling of large models having more than 100
000 equations. Modelica supports several formalisms:
ordinary differential equations (ODE), differential-
algebraic equations (DAE), bond graphs, finite state
automata, Petri nets etc.

The language has been designed to allow tools to
generate very efficient code. Modelica models are used,
for example, in hardware-in-the-loop simulation of
automatic gearboxes, which have variable structure
models. Such models have so far usually been treated
by hand, modeling each mode of operation separately.
In Modelica, component models are used for shafts,
clutches, brakes, gear wheels etc. and the tool can
find the different modes of operation automatically.
The modeling effort is thus reduced considerably since
model components can be reused and tedious and
error-prone manual manipulations are not needed.

Reuse is a key issue for handling complexity. There
have been several attempts to define object-oriented
languages for physical modeling. However, the ability
to reuse and exchange models relies on a standardized
format. It was thus important to bring this expertise
together to unify concepts and notations. A design
group was formed in September 1996 and one year
later, the first version of the Modelica1 language was
available (www.Modelica.org). Modelica is intended to
serve as a standard format so that models arising
in different domains can be exchanged between tools
and users. It has been designed by a group of more
than 15 experts with previous know-how of modeling
languages and differential-algebraic equation models.

1ModelicaTM is a trade mark of the Modelica Design Group

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institute of Transport Research:Publications

https://core.ac.uk/display/11088563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

After 15 three-day meetings, during a 2-year period,
version 1.1 of the language specification was finished
in December 1998. Tools and model libraries are now
available. The fact that the language is not tied to
one particular software vendor is very important since
a stable format for storing model knowledge and
allowing reuse is necessary in order to handle the
heterogeneous and complex models in the future.

2. Composition Diagrams

Modelica supports both high level modeling by com-
position and detailed library component modeling by
equations. High level modeling by composition dia-
grams will first be discussed by giving some exam-
ples from different domains. Models of standard com-
ponents are typically available in model libraries. Us-
ing a graphical model editor, a model can be defined by
drawing a composition diagram as shown in Fig. 1–5,
by positioning icons that represent the models of the
components, drawing connections and giving param-
eter values in dialogue boxes. Constructs for includ-
ing graphical annotations in Modelica make icons and
composition diagrams portable.

Fig. 1 shows part of a larger multi-domain model. It
consists of the composition diagram of one axis of the
industrial robot Manutec r3. On the left side of the

axis1

1
r3Gear

1
r3Motor

r3ControlqdRef
1
S

qRef
1
S

k2

i

k1

i

qddRef cut joint

Figure 1 Composition diagram of one axis of the
Manutec r3 robot.

figure the composition diagram of the overall axis is
shown. It contains the desired reference acceleration
of the axis as an input signal on the left connector,
and a mechanical flange to drive a shaft on the right
connector. The right side of the figure shows the
decomposition of the axis: The reference acceleration
is integrated twice to derive a reference velocity and
a reference position. The reference values are fed into
a controller r3Control. The output of the controller
(the connector at the right side of the controller) is the
reference current of the electric motor, r3Motor, that
drives the gear box, r3Gear. The driven part of the
gear box (connector at the right side) is a mechanical
flange to which the axis of a shaft or of a robot joint
can be connected.

In Fig. 2 the details of the axis controller r3Control

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

wSum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

Figure 2 A controller model for the Manutec r3 robot.

are shown as a block diagram including transfer
functions. Typical for such axis controllers, it has
two cascaded parts consisting of a velocity and of a
position controller. The output of the controller is the
desired reference current of the electric motor (the
current of the motor is approximately proportional to
the produced motor torque which is the quantity to be
“really” controlled).

V
s

-

+
diff

-

+
power

emf

La=
(250/(2*D

*w
))

R
a=

250

Rd2=100

C=0.004*D/w

-

+
OpI

Rd1=100

Ri=10

Rp1=200

R
p2

=
50

Rd4=100

hall2

R
d3

=
10

0

g1

g2

g3

h

g4

g5

rw

cut in
cut nDrive

iRef

qd q

qd

Figure 3 A motor model for the Manutec r3 robot.

In Fig. 3 the model r3Motor of the electric motor is
shown. It consists of the current controller realized
by operational amplifiers and the DC motor (Ra, La,

emf). The reference current is the input signal to the
motor (the connector at the left side) and drives a
controlled voltage source. The DC motor produces a
torque which drives a mechanical flange (the connector
at the right side).
The composition diagram of the gearbox r3Gear of the
drive train is shown in Fig. 4. The gearbox is modeled

Jmotor=J

S
gear=i

spring=c
fr

ic
=

R
v0

joint=0

S

Figure 4 A gearbox model for the Manutec r3 robot.

by the motor inertia, a (rotational) spring to model the
gear elasticity, an ideal gearbox representing the gear
ratio and a load inertia to model the rotational inertia
of all parts at the driven side of the gear. Component
fric connected between the motor shaft and the shaft
bearings models the Coulomb friction of the bearings.

Figure 5 Overall model of the Manutec r3 robot.

Finally, Fig. 5 contains the composition diagram of
the complete robot. On the right side of the figure,
the mechanical part of the robot is given in form of
a multibody system. It consists of six revolute joints,
six bodies and the load. A body component describes

the mass and inertia effects of the body and defines
the visual appearance for an animation program. The
joints of the robot are driven by the axes on the left side
of the figure (axis1,...,axis6)which are instances of
the already explained axis component (Fig. 1–4).

Figure 6 3D-view of a robot.

Simulation results can be animated if visual properties
have been given for the bodies. An example of such 3D
views is given in Fig. 6.

For 3D mechanical models, the 2D composition dia-
gram of Fig. 5 does not show the positions and direc-
tions correctly. In such a case it might be better to use a
CAD tool for definition of the mechanism and convert
it to Modelica. A tool for converting SolidWork mod-
els to Modelica has already been developed (Engelson
et al. (1999)).

3. Modelica Details

To describe how the details of a component are mod-
eled, consider a simple motor drive system as defined
in Fig. 7. The system can be broken up into a set of
connected components: an electrical motor, a gearbox,
a load and a control system. A Modelica model of the
motor drive system is given in Fig. 8 (excluding graph-
ical annotations).
It is a composite model which specifies the topology
of the system to be modeled in terms of components

motor
controller

PI
n=100

Jl=10

wl

wr

Figure 7 Schematic picture of a motor drive.

model MotorDrive
PI controller;
Motor motor;
Gearbox gearbox(n=100);
Shaft Jl(J=10);
Tachometer wl;

equation
connect (controller.out, motor.inp);
connect (motor.flange , gearbox.a);
connect (gearbox.b , Jl.a);
connect (Jl.b , wl.a);
connect (wl.w , controller.inp);

end MotorDrive;

Figure 8 A Modelica model of the system in Fig. 7.

and connections between the components. The state-
ment “Gearbox gearbox(n=100);” declares a compo-
nent gearbox of class Gearbox and sets the default
value of the gear ratio, n, to 100.

V
s

emf

La=0.05

Ra=0.5

Jm=1.0E-3

Figure 9 A motor model.

A component model may be a composite model to
support hierarchical modeling. The object diagram of
the model class Motor is shown in Fig. 9.

The meaning of connections will be discussed next as
well as the description of behavior on the lowest level
using real equations.

3.1 Variables
Physical modeling deals with the specification of rela-
tions between physical quantities. For the drive sys-
tem, quantities such as angle and torque are of inter-
est. Their types are declared in Modelica as

type Angle = Real(quantity = "Angle",
unit = "rad",
displayUnit = "deg");

type Torque = Real(quantity = "Torque",
unit = "N.m");

where Real is a predefined type, which has a set of
attributes such as name of quantity, unit of measure,
default display unit for input and output, minimum
value, maximum value and initial value. The Modelica
base library, which is an intrinsic part of Modelica
includes these kinds of type definitions.

3.2 Connectors and connections
Connections specify interactions between components.
A connector should contain all quantities needed to de-
scribe the interaction. Voltage and current are needed
for electrical components. Angle and torque are needed
for drive train elements.

connector Pin connector Flange
Voltage v; Angle r;
flow Current i; flow Torque t;

end Pin; end Flange;

A connection, connect (Pin1, Pin2), with Pin1 and
Pin2 of connector class Pin, connects the two pins such
that they form one node. This implies two equations,
namely Pin1.v = Pin2.v and Pin1.i + Pin2.i = 0.
The first equation indicates that the voltages on both
branches connected together are the same, and the
second corresponds to Kirchhoff ’s current law saying
that the current sums to zero at a node. Similar
laws apply to flow rates in a piping network and to
forces and torques in a mechanical system. The sum-
to-zero equations are generated when the prefix flow
is used in the connector declarations. The Modelica
base library includes also connector definitions.

3.3 Partial models and inheritance
A very important feature in order to build reusable
descriptions is to define and reuse partial models. A
common property of many electrical components is
that they have two pins. This means that it is useful
to define an interface model class TwoPin, that has two
pins, p and n, and a quantity, v, that defines the voltage
drop across the component.

partial model TwoPin
Pin p, n;
Voltage v;

equation
v = p.v - n.v; p.i + n.i = 0;

end TwoPin;

The equations define common relations between quan-
tities of a simple electrical component. The keyword
partial indicates that the model class is incomplete.
To be useful, a constitutive equation must be added.
To define a model for a resistor, start from TwoPin and
add a parameter for the resistance and Ohm’s law to
define the behavior.

model Resistor "Ideal resistor"
extends TwoPin;
parameter Resistance R;

equation
R*p.i = v;

end Resistor;

A string between the name of a class and its body
is treated as a comment attribute. Tools may display

this documentation in special ways. The keyword
parameter specifies that the quantity is constant
during a simulation experiment, but can change values
between experiments.

For the mechanical parts, it is also useful to define a
shell model with two flange connectors,

partial model TwoFlange
Flange a, b;

end TwoFlange;

A model of a rotating inertia is given by

model Shaft
extends TwoFlange;
parameter Inertia J = 1;
AngularVelocity w;

equation
a.r = b.r;

der (a.r) = w;
J* der (w) = a.t + b.t;

end Shaft;

where der (w) means the time derivative of w.

4. Non-Causal Modeling

In order to allow reuse of component models, the
equations should be stated in a neutral form without
consideration of computational order, i.e., non-causal
modeling.

4.1 Background
Most of the general-purpose simulation software on
the market such as ACSL, Simulink and SystemBuild
assume that a system can be decomposed into block
diagram structures with causal interactions (Åström
et al. (1998)). This means that the models are ex-
pressed as an interconnection of submodels on explicit
state-space form,

dx
dt
� f(x, u)

y � g(x, u)

where u is input, y is output and x is the state. It
is rare that a natural decomposition into subsystems
leads to such a model. Often a significant effort in
terms of analysis and analytical transformations is
needed to obtain a problem in this form. It requires a
lot of engineering skills and manpower and it is error-
prone.

To illustrate the difficulties, a Simulink model for the
simple motor drive in Fig. 7 is shown in Fig. 10–11.
The structure of the block diagram does not reflect the
topology of the physical system. It is easy to recognize
the controller in the Simulink model in Fig. 10, but the

e
1/(Jl+Jm*n^2)

T2wdot

Step
PID

PI

Vs

wl
T

Motor

s

1

Inertia

T

Figure 10 A Simulink model for the motor drive in
Fig. 7.

1

T

n*km

emf2

n*km

emf1Sum

Ra

Resistor

1/La

Inductor

s

1

I

2

wl

1

Vs

Figure 11 A Simulink model for the motor in Fig. 9.

gearbox and the inertias of the motor and the load are
no longer visible. They appear combined into a gain
coefficient 1/(Jl + Jmn2).
There is a fundamental limitation of block diagram
modeling. The blocks have a unidirectional data flow
from inputs to outputs. This is the reason why an
object like a gearbox in the simple motor drive cannot
be dealt with directly. It is also the reason why motor
and load inertia appear in the mixed expression in
the Simulink model. If it is attempted to simulate the
basic equations directly there will be a loop which only
contains algebraic equations. Several manual steps
including differentiation are required to transform
the equations to the form required by Simulink. The
need for manual transformations imply that it is
cumbersome to build physics based model libraries in
the block diagram languages. A general solution to this
problem requires a paradigm shift.

4.2 Differential-algebraic equations
In Modelica it is possible to write balance and other
equations in their natural form as a system of
differential-algebraic equations, DAE,

0 � f(ẋ, x, y, u)
where x is the vector of unknowns that appear dif-
ferentiated in the equation and y is the vector of un-
knowns that do not appear differentiated.

Modelica has been carefully designed in such a way
that computer algebra can be utilized to achieve as
efficient simulation code as if the model would be
converted to ODE form manually. For example, define
a gearbox model as

model Gearbox "Ideal gearbox without inertia"
extends TwoFlange;
parameter Real n;

equation
a.r = n*b.r;

n*a.t = b.t;
end Gearbox;

without bothering about what are inputs from a com-
putational point of view and use it as a component
model, when modeling the drive system in Fig. 7.

This use actually leads to a non-trivial simulation
problem. The ideal gearbox is rigidly connected to
a rotating inertia on each side. It means the model
includes two rigidly connected inertias, since there is
no flexibility in the ideal gearbox. The angular position
as well as the velocity of the two inertias should be
equal. All of these four differentiated variables cannot
be state variables with their own independent initial
values.

A DAE problem, which includes constraints between
variables appearing differentiated is sometimes called
a “high index DAE”. When converting it to ODE form,
it is necessary to differentiate some equations and the
set of state variables can be selected smaller than the
set of differentiated variables. There is an efficient al-
gorithm by Pantelides (1988) for the determination of
what equations to differentiate and an algorithm for
selection of state variables by Mattsson and Söder-
lind (1993).
In the drive example, the position constraint needs to
be differentiated twice to calculate the reaction torque
in the coupling, and it is sufficient to select the angle
and velocity of either inertia as state variables. The
constraint leads to a linear system of simultaneous
equations involving angular accelerations and torques.
A symbolic solution will contain a determinant of the
form “JX+ Jmn2”. The tool thus automatically deduces
how inertia is transformed through a gearbox.

5. Advanced Modeling Features

The modeling power of Modelica is great. Some of the
more powerful constructs are summarized below.

5.1 Vectors, matrices and arrays
Modeling of, for example, multi-body systems and con-
trol systems is done conveniently with matrix equa-
tions. Multi-dimensional arrays and the usual matrix
operators and matrix functions are thus supported in
Modelica.

The modeling of continuous time transfer function is
given below as an example. It uses a restricted model

called block having inputs and outputs with given
causality. The polynomial coefficients in a0+a1s+ . . .+
ansn are give as a vector {a0, a1, . . . , an}.
partial block SISO

"Single Input/Single Output block"
input Real u "input";
output Real y "output";

end SISO;

block TransferFunction
extends SISO;
parameter Real a[:]={1, 1} "Denominator";
parameter Real b[:]={1} "Numerator";

protected
constant Integer na=size(a, 1);
constant Integer nb(max=na) = size(b, 1);
constant Integer n=na-1 "System order";
Real b0[n] = cat(1, b, zeros(na - nb))

"Zero expanded b vector.";
Real x[n] "State vector";

equation
// Controllable canonical form
der (x[2:n]) = x[1:n-1];
a[na]* der (x[1]) + a[1:n]*x = u;
y = (b0[1:n] - b0[na]/a[na]*a[1:n])*x +

b0[na]/a[na]*u;
end TransferFunction;

It is also possible to have arrays of components and to
define regular connection patterns. A typical usage is
the modeling of a distillation column which consists of
a set of trays connected in series. The use of component
arrays for spatial discretization when modeling heat
exchangers is illustrated in Mattsson et al. (1998).

5.2 Class parameters

Component parameters such as resistance values have
been discussed. Reuse of model library components is
further supported by allowing model class parameters.

As an example assume that we would like to replace
the PI controller in Fig. 7 by an auto tuning controller.
It is of course possible to just replace the controller
in a graphical user environment, i.e., to create a
new model. The problem with this solution is that
two models must be maintained. Modelica has the
capability to instead substitute the model class of
certain components using a language construct at
the highest hierarchical level, so only one version
of the rest of the model is needed. Based on the
model MotorDrive in Fig. 8 a model MotorDrive2 with
redeclared controller is described as

model MotorDrive2 = MotorDrive
(redeclare AutoTuningPI controller);

This is a strong modification of the motor drive model
and there is the issue of possible invalidation of the
model. The keyword redeclare clearly marks such

modifications. Furthermore, the new component must
be a subtype of PI. i.e., have compatible connectors and
parameters. The type system of Modelica is greatly in-
fluenced by type theory, Abadi and Cardelli (1996), in
particular the notion of subtyping (the structural re-
lationship that determines type compatibility) which
is different from subclassing (the mechanism for in-
heritance). The main benefit is added flexibility in the
composition of types, while still maintaining a rigorous
type system. Inheritance is not used for classification
and type checking in Modelica.

The public components of a class are typically its
connectors and parameters. A model of a PI controller
has connectors for the reference signal, measured
value and control output and parameters such as gain
and integral time. So it is natural to require that also
an autotuning controller has those components.

In many real applications there are many PI con-
trollers. This makes it clumsy to use the approach de-
scribed above to change controllers, because we need to
know the names of all controllers. To avoid this prob-
lem and prepare for replacement of a set of models,
one can define a replaceable class, ControllerModel
in the drive model:

partial block SISOController
input Real ref;
input Real inp;
output Real out;

end SiSOController;

model MotorDrive3
replaceable block ControllerModel =

SISOController;
protected

ControllerModel controller;
// then same as MotorDrive.

end MotorDrive3;

where the replaceable model ControllerModel is de-
clared to be of type SISOController, which means that
it will be enforced that the actual class will have the
inputs ref and inp and the output out, but it may be
parameterized in any way. Setting ControllerModel to
for example PID is done as

model PIDDrive = MotorDrive3
(redeclare block ControllerModel = PID);

The use of model class parameters to support machine-
medium decomposition is illustrated in Mattsson
et al. (1998), Ernst et al. (1997) and Tummescheit and
Eborn (1998).

5.3 Hybrid modeling
Realistic physical models often contain discontinuities,
discrete events or changes of structure. Examples are

relays, switches, friction, impact, sampled data sys-
tems etc. Modelica has introduced special language
constructs allowing a simulator to introduce efficient
handling of such events. Special design emphasis was
given to synchronization and propagation of events
and the possibility to find consistent restarting con-
ditions after an event. Hybrid modeling is further dis-
cussed in another CACSD’99 paper, Otter et al. (1999).
Modelica supports the development of efficient model
libraries for finite state machines and Petri nets, see
Mosterman et al. (1998). Modeling of automatic gear-
boxes in Modelica for the purpose of real-time simula-
tion is described in Mattsson et al. (1998). Such models
are non-trivial because of the varying structure during
gear shift utilizing clutches, free wheels and brakes.

5.4 Algorithms and functions
Algorithms and functions are supported in Modelica
for modeling parts of a system in procedural program-
ming style. Modelica functions have a syntax similar to
other Modelica classes and matrix expressions can be
used. Assignment statements, if statements and loops
are available in the usual way. A function for polyno-
mial multiplication is given as an example. It takes
two coefficient vectors as inputs and returns the coef-
ficient vector for the product.

function polynomialMultiply
input Real a[:], b[:];
output Real c[:] =

zeros(size(a,1) + size(b, 1) - 1);
algorithm

for i in 1:size(a, 1) loop
for j in 1:size(b, 1) loop

c[i+j-1] := c[i+j-1] + a[i]*b[j];
end for ;

end for ;
end polynomialMultiply;

6. Standard Libraries

In order that Modelica is useful for model exchange, it
is important that libraries of the most commonly used
components are available, ready to use, and sharable
between applications. For this reason, an extensive
Modelica base library is under development which
will become an intrinsic part of Modelica. It includes
mathematical functions (sin, ln, etc.), type definitions
(e.g., Angle, Voltage), interface definitions (e.g., Pin,
Flange) and component libraries for various domains.

Predefined quantity types and connectors are useful
for standardization of the interfaces between compo-
nents and achieve model compatibility without having
to resort to explicit coordination of modeling activities.

Component libraries are mainly derived from already
existing model libraries from various object-oriented

modeling systems. They are realized by specialists in
the respective area, taking advantage of the new fea-
tures of Modelica not available in the original model-
ing system. Libraries in the following areas are under
development: input/output blocks, electric and elec-
tronic components (SPICE3 elements), electric power
systems, drive trains and gear boxes, 3D-mechanical
systems (multi-body systems), hydraulic systems, 1D
thermo-fluid flow, aircraft flight system dynamics com-
ponents, bond graphs, finite state machines and Petri
nets.

7. Future Development

The Modelica effort has so far been concentrated on
physical modeling with differential-algebraic equation
systems with some discrete event features to handle
discontinuities and sampled systems. There is a need
to consider extensions of Modelica for handling of
partial differential equations, more advanced discrete
event models, user interaction, etc.

7.1 User Interaction
When using a mathematical model for simulation
or optimization, the model itself is only a part of
the problem specification which also needs to include
parameter values, initial values, start time, stop time
or stop condition. On a lower level it may be of interest
to specify solvers and their parameters.

Typically, an interactive user interface for modeling
and simulation needs extensive capabilities for general
matrix calculations and control design algorithms. It
should, of course, be possible to use Modelica tools with
close connections to available packages like Matlab,
Xmath, Matematica, etc. However, for many users it
would be beneficial to use the Modelica syntax, the
strong typing property and matrix expressions in an
interactive fashion. Modelica functions could then be
used both within a model and be called interactively.

Much design effort has been devoted to describing
interfaces to external function written in other lan-
guages like C, C++ and FORTRAN. The Modelica de-
sign group is now working on extending the applicabil-
ity of the language for experimentation and design, i.e.,
as a base for the design engineer’s environment. There
will be a standardized view of the interaction with a
model to handle parameter sets, result trajectories etc.
and a standardized simulator API to allow automated
parameter studies etc. Interfaces to control numerics
subroutine packages like Slicot (Benner et al. (1998))
for control analysis/synthesis and multi-objective de-
sign optimization packages like MOPS (Joos (1999))
will be convenient due to the external function inter-
face of Modelica.

The following simple example illustrates the use of
Modelica matrix expressions, for-loops and predefined
functions to operate on the model.

openModel("controllerTest.mo");
omega = 1; // Declare omega.
k = 1; // Declare gain.
for D in {0.1, 0.2, 0.4, 0.7} loop

// Parameter sweep over damping
// coefficient.
tr.a = {1, 2*D*omega, omega**2};
tr.b = {k*omega**2};
simulateModel("controllerTest", 0, 10);
plot(u, y);

end for ;

7.2 Visualization
The object-oriented approach of modeling also allows
that other aspects than the dynamic properties are
described within the same class.

Modelica already has provisions to describe the graph-
ical layout of icons and the connection topology by
means of annotations. So far, only static pictures
have been considered. When using models for operator
training, typically a live process layout is used to show
the status of the process by means of updated numeric
text, changing water level of a tank, etc. It is also nat-
ural to describe the graphical user interface of for ex-
ample a controller in an object-oriented fashion. Work
is thus going on to define how visualization of data
shall be described, i.e. the use of numeric presenta-
tion, bar graphs, curves, etc. Additionally there will be
a set of user input primitives for interactively chang-
ing parameters etc. The annotation attributes could be
extended to handle such cases.

Incorporation of 3D graphical objects are considered
to allow animation of mechanical systems, Engelson
et al. (1999).

8. Organization of the Modelica Design

The Modelica design effort started in the continuous
time domain since there is a common mathematical
framework in the form of differential-algebraic equa-
tions (DAE) and there are several existing modeling
languages based on similar ideas. There is also signif-
icant experience of using these languages in various
applications.

Among the recent research results in modeling and
simulation the two concepts object-oriented and non-
causal modeling have had a strong impact on the
Modelica design. A new attempt at introducing in-
teroperability and openness to the world of modeling
and simulation systems is justified by the combined
power of the two concepts together with proven tech-

nology from existing modeling languages such as AS-
CEND [Piela et al. (1991)], Dymola [Elmqvist (1978);
Elmqvist et al. (1996)], gPROMS [Barton and Pan-
telides (1994)], NMF [Sahlin et al. (1996)], ObjectMath
[Fritzson et al. (1995)], Omola [Mattsson et al. (1993)],
SIDOPS+ [Breunese and Broenink (1997), Smile
[Kloas et al. (1995)], U.L.M. [Jeandel et al. (1996)]
and VHDL-AMS [IEEE (1997)].
The Modelica design effort started in September 1996
within an action of the ESPRIT project "Simulation
in Europe Basic Research Working Group (SiE-WG)"
and became in February 1997 the Technical Committee
1 within Eurosim. It is since July 1998 a Technical
Chapter within the Society for Computer Simulation
International (www.SCS.org). The Modelica Design
Group has had 17 meetings to work out the Modelica
details.

The Modelica Design Group includes simula-
tion tool builders, users from different application do-
mains, and computer scientists. The present and past
members (May 1999) are Manuel Alfonseca, Univer-
sidad Autonoma de Madrid, Spain, Bernhard Bach-
mann, ABB Network Partner Ltd., Baden-Dättwil,
Switzerland, Fabrice Boudaud, Alexandre Jeandel and
Nathalie Loubere, Gaz de France, Jan Broenink, Uni-
versity of Twente, The Netherlands, Dag Brück, Hild-
ing Elmqvist (chairman), Sven Erik Mattsson and
Hans Olsson, Dynasim AB, Lund, Sweden, Thilo
Ernst, GMD-FIRST, Berlin, Germany, Jorge Ferreira,
Universidade de Aveiro, Portugal, Rüdiger Franke,
ABB Corporate Research Center, Heidelberg, Ger-
many, Peter Fritzson, David Kågedal, and Henrik Nils-
son, Linköping University, Sweden, Pavel Grozman
and Per Sahlin, BrisData AB, Stockholm, Sweden,
Kaj Juslin, VTT, Finland, Matthias Klose, Technical
University of Berlin, Germany, Pieter Mosterman and
Martin Otter, DLR Oberpfaffenhofen, Germany, An-
dré Schneider and Peter Schwarz, Fraunhofer Insti-
tute for Integrated Circuits, Dresden, Germany, Hu-
bertus Tummescheit, Lund University, Sweden, Hans
Vangheluwe, University of Gent, Belgium.

9. Conclusions

The Modelica effort has been described and an
overview of Modelica has been given. Version 1.1 of
Modelica was finished in December 1998. Tools and
model libraries are now available. For more informa-
tion, including rationale and definition of Modelica,
upcoming meetings, future developments and avail-
able tools, see http://www.Modelica.org.

Model classes and their instantiation form the basis of
hierarchical modeling. Connectors and connections cor-
respond to physical connections of components. Inher-

itance supports easy adaptation of components. These
concepts can be successfully employed to support hier-
archical structuring, reuse and evolution of large and
complex models independent from the application do-
main and specialized graphical formalisms.

The benefits of non-causal modeling with DAE’s has
been clearly demonstrated and compared to traditional
block diagram modeling. It has also been pointed out
that tools can incorporate computer algebra methods
to translate the high-level Modelica descriptions to
efficient simulation code.

Acknowledgements
The authors would like to thank the other members of
the Modelica Design Group for inspiring discussions
and their contributions to the Modelica design.

10. References

ABADI, M. and L. CARDELLI (1996): A Theory of Objects.
Springer-Verlag.

BARTON, P. and C. PANTELIDES (1994): “Modeling of combined
discrete/continuous processes.” AIChE J., 40, pp. 966–
979.

BENNER, P., V. MEHRMANN, V. SIMA, S. VAN HUFFEL, and
A. VARGA (1998): “SLICOT – A subroutine library in
systems and control theory.” In DATTA, Ed., Applied
and Computational Control, Signals and Circuits, vol. 1.
Birkhäuser.

BREUNESE, A. P. and J. F. BROENINK (1997): “Modeling
mechatronic systems using the SIDOPS+ language.” In
Proceedings of ICBGM’97, 3rd International Conference
on Bond Graph Modeling and Simulation, Simulation Se-
ries, Vol.29, No.1, pp. 301–306. The Society for Computer
Simulation International.

ELMQVIST, H. (1978): A Structured Model Language for Large
Continuous Systems. PhD thesis TFRT-1015, Depart-
ment of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

ELMQVIST, H., D. BRÜCK, and M. OTTER (1996): Dymola
— User’s Manual. Dynasim AB, Research Park Ideon,
Lund, Sweden.

ENGELSON, V., H. LARSSON, and P. FRITZON (1999): “Design,
simulation and visualization environment for object-
oriented mechanical and mult-domain models in Mod-
elica.” In Proceedings of the IEEE International Confer-
ence on Information Visualisation. IEEE Computer Soci-
ety, London, UK.

ERNST, T., M. KLOSE, and H. TUMMESCHEIT (1997): “Modelica
and Smile — A case study applying object-oriented
concepts to multi-facet modeling.” In Proceedings of the
1997 European Simulation Symposium (ESS’97). The
Society for Computer Simulation, Passau, Germany.

FRITZSON, P., L. VIKLUND, D. FRITZSON, and J. HERBER (1995):
“High-level mathematical modeling and programming.”
IEEE Software, 12:3.

IEEE (1997): “Standard VHDL Analog and Mixed-Signal
Extensions.” Technical Report IEEE 1076.1. IEEE.

JEANDEL, A., F. BOUDAUD, P. RAVIER, and A. BUHSING (1996):
“U.L.M: Un Langage de Modélisation, a modelling lan-
guage.” In Proceedings of the CESA’96 IMACS Multicon-
ference. IMACS, Lille, France.

JOOS, H.-D. (1999): “A methodology for multi-objective de-
sign assessment and flight control synthesis tuning.”
Aerospace Science and Technology, 3.

KLOAS, M., V. FRIESEN, and M. SIMONS (1995): “Smile
— A simulation environment for energy systems.”
In SYDOW, Ed., Proceedings of the 5th International
IMACS-Symposium on Systems Analysis and Simula-
tion (SAS’95), vol. 18–19 of Systems Analysis Modelling
Simulation, pp. 503–506. Gordon and Breach Publishers.

MATTSSON, S. E., M. ANDERSSON, and K. J. ÅSTRÖM (1993):
“Object-oriented modelling and simulation.” In LINKENS,
Ed., CAD for Control Systems, chapter 2, pp. 31–69.
Marcel Dekker Inc, New York.

MATTSSON, S. E., H. ELMQVIST, and M. OTTER (1998): “Physi-
cal system modeling with Modelica.” Control Engineering
Practice, 6, pp. 501–510.

MATTSSON, S. E. and G. SÖDERLIND (1993): “Index reduction
in differential-algebraic equations using dummy deriva-
tives.” SIAM Journal of Scientific and Statistical Com-
puting, 14:3, pp. 677–692.

MODELICA (1998): A unified object-oriented language
for physical systems modeling. Modelica homepage:
http://www.Modelica.org.

MOSTERMAN, P. J., M. OTTER, and H. ELMQVIST (1998): “Mod-
eling Petri nets as local copnstraint equations for hy-
brid systems using Modelica.” In Proceedings of the 1998
Summer Simulation Conference, pp. 314–319. Society for
Computer Simulation International, Reno, Nevada, USA.

OTTER, M., H. ELMQVIST, and S. E. MATTSSON (1999): “Hybrid
modeling in Modelica based on the synchronous data flow
principle.” In Proceedings of the 1999 IEEE Symposium
on Computer-Aided Control System Design, CACSD’99.
IEEE Control Systems Society, Hawaii, USA.

PANTELIDES, C. (1988): “The consistent initialization of
differential-algebraic systems.” SIAM Journal of Scien-
tific and Statistical Computing, 9, pp. 213–231.

PIELA, P., T. EPPERLY, K. WESTERBERG, and A. WESTERBERG

(1991): “ASCEND: An object-oriented computer environ-
ment for modeling and analysis: the modeling language.”
Computers and Chemical Engineering, 15:1, pp. 53–72.

SAHLIN, P., A. BRING, and E. F. SOWELL (1996): “The Neutral
Model Format for building simulation, Version 3.02.”
Technical Report. Department of Building Sciences, The
Royal Institute of Technology, Stockholm, Sweden.

ÅSTRÖM, K. J., H. ELMQVIST, and S. E. MATTSSON (1998):
“Evolution of continuous-time modeling and simula-
tion.” In ZOBEL AND MOELLER, Eds., Proceedings of
the 12th European Simulation Multiconference, ESM’98,
pp. 9–18. Society for Computer Simulation International,
Manchester, UK.

TUMMESCHEIT, H. and J. EBORN (1998): “Design of a thermo-
hydraulic model library in Modelica.” In ZOBEL AND

MOELLER, Eds., Proceedings of the 12th European Simu-
lation Multiconference, ESM’98, pp. 132–136. Society for
Computer Simulation International, Manchester, UK.

