75 research outputs found

    Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets

    Get PDF
    Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13-14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential "universal" targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK

    PIPS: Pathogenicity Island Prediction Software

    Get PDF
    The adaptability of pathogenic bacteria to hosts is influenced by the genomic plasticity of the bacteria, which can be increased by such mechanisms as horizontal gene transfer. Pathogenicity islands play a major role in this type of gene transfer because they are large, horizontally acquired regions that harbor clusters of virulence genes that mediate the adhesion, colonization, invasion, immune system evasion, and toxigenic properties of the acceptor organism. Currently, pathogenicity islands are mainly identified in silico based on various characteristic features: (1) deviations in codon usage, G+C content or dinucleotide frequency and (2) insertion sequences and/or tRNA genetic flanking regions together with transposase coding genes. Several computational techniques for identifying pathogenicity islands exist. However, most of these techniques are only directed at the detection of horizontally transferred genes and/or the absence of certain genomic regions of the pathogenic bacterium in closely related non-pathogenic species. Here, we present a novel software suite designed for the prediction of pathogenicity islands (pathogenicity island prediction software, or PIPS). In contrast to other existing tools, our approach is capable of utilizing multiple features for pathogenicity island detection in an integrative manner. We show that PIPS provides better accuracy than other available software packages. As an example, we used PIPS to study the veterinary pathogen Corynebacterium pseudotuberculosis, in which we identified seven putative pathogenicity islands

    Patterns of genetic diversity in southern and southeastern Araucaria angustifolia (Bert.) O. Kuntze relict populations

    Get PDF
    Habitat fragmentation and a decrease in population size may lead to a loss in population genetic diversity. For the first time, the reduction in genetic diversity in the northernmost limit of natural occurence (southeastern Brazil) of Araucaria angustifolia in comparison with populations in the main area of the species continuous natural distribution (southern Brazil), was tested. The 673 AFLPs markers revealed a high level of genetic diversity for the species (Ht = 0.27), despite anthropogenic influence throughout the last century, and a decrease of H in isolated populations of southeastern Brazil (H = 0.16), thereby indicating the tendency for higher genetic diversity in remnant populations of continuous forests in southern Brazil, when compared to natural isolated populations in the southeastern region. A strong differentiation among southern and southeastern populations was detected (AMOVA variance ranged from 10%-15%). From Bayesian analysis, it is suggested that the nine populations tested form five “genetic clusters” (K = 5). Five of these populations, located in the northernmost limit of distribution of the species, represent three “genetic clusters”. These results are in agreement with the pattern of geographic distribution of the studied populations

    Panel 7: otitis media:treatment and complications

    Get PDF
    Objective: We aimed to summarize key articles published between 2011 and 2015 on the treatment of (recurrent) acute otitis media, otitis media with effusion, tympanostomy tube otorrhea, chronic suppurative otitis media and complications of otitis media, and their implications for clinical practice. Data Sources: PubMed, Ovid Medline, the Cochrane Library, and Clinical Evidence (BMJ Publishing). Review Methods: All types of articles related to otitis media treatment and complications between June 2011 and March 2015 were identified. A total of 1122 potential related articles were reviewed by the panel members; 118 relevant articles were ultimately included in this summary. Conclusions: Recent literature and guidelines emphasize accurate diagnosis of acute otitis media and optimal management of ear pain. Watchful waiting is optional in mild to moderate acute otitis media; antibiotics do shorten symptoms and duration of middle ear effusion. The additive benefit of adenoidectomy to tympanostomy tubes in recurrent acute otitis media and otitis media with effusion is controversial and age dependent. Topical antibiotic is the treatment of choice in acute tube otorrhea. Symptomatic hearing loss due to persistent otitis media with effusion is best treated with tympanostomy tubes. Novel molecular and biomaterial treatments as adjuvants to surgical closure of eardrum perforations seem promising. There is insufficient evidence to support the use of complementary and alternative treatments. Implications for Practice: Emphasis on accurate diagnosis of otitis media, in its various forms, is important to reduce overdiagnosis, overtreatment, and antibiotic resistance. Children at risk for otitis media and its complications deserve special attention
    corecore