93 research outputs found

    Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging

    Get PDF
    Natural biopolymers have become key players in the preparation of biodegradable food packaging. However, biopolymers are typically highly hydrophilic, which imposes limitations in terms of barrier properties that are associated with water interactions. Here, we enhance the barrier properties of biobased packaging using multilayer designs, in which each layer displays a complementary barrier function. Oxygen, water vapor, and UV barriers were achieved using a stepwise assembly of cellulose nanofibers, biobased wax, and lignin particles supported by chitin nanofibers. We first engineered several designs containing CNFs and carnauba wax. Among them, we obtained low water vapor permeabilities in an assembly containing three layers, i.e., CNF/wax/CNF, in which wax was present as a continuous layer. We then incorporated a layer of lignin nanoparticles nucleated on chitin nanofibrils (LPChNF) to introduce a complete barrier against UV light, while maintaining film translucency. Our multilayer design which comprised CNF/wax/LPChNF enabled high oxygen (OTR of 3 +/- 1 cm(3)/m(2).day) and water vapor (WVTR of 6 +/- 1 g/m(2).day) barriers at 50% relative humidity. It was also effective against oil penetration. Oxygen permeability was controlled by the presence of tight networks of cellulose and chitin nanofibers, while water vapor diffusion through the assembly was regulated by the continuous wax layer. Lastly, we showcased our fully renewable packaging material for preservation of the texture of a commercial cracker (dry food). Our material showed functionality similar to that of the original packaging, which was composed of synthetic polymers.Peer reviewe

    Regioselective and water-assisted surface esterification of never-dried cellulose : nanofibers with adjustable surface energy

    Get PDF
    Correction for ‘Regioselective and water-assisted surface esterification of never-dried cellulose: nanofibers with adjustable surface energy’ by Marco Beaumont, Caio G. Otoni, Bruno D. Mattos et. al., Green Chem., 2021, DOI: 10.1039/D1GC02292J.A new regioselective route is introduced for surface modification of biological colloids in the presence of water. Taking the case of cellulose nanofibers (CNFs), we demonstrate a site-specific (93% selective) reaction between the primary surface hydroxyl groups (C6-OH) of cellulose and acyl imidazoles. CNFs bearing C6-acetyl and C6-isobutyryl groups, with a degree of substitution of up to 1 mmol g(-1) are obtained upon surface esterification, affording CNFs of adjustable surface energy. The morphological and structural features of the nanofibers remain largely unaffected, but the regioselective surface reactions enable tailoring of their interfacial interactions, as demonstrated in oil/water Pickering emulsions. Our method precludes the need for drying or exchange with organic solvents for surface esterification, otherwise needed in the synthesis of esterified colloids and polysaccharides. Moreover, the method is well suited for application at high-solid content, opening the possibility for implementation in reactive extrusion and compounding. The proposed acylation is introduced as a sustainable approach that benefits from the presence of water and affords a high chemical substitution selectivity.Peer reviewe

    A elaboração e análise do índice de desenvolvimento das famílias na cidade de Ponte Nova

    Get PDF
    Este estudo analisou a situação das famílias da cidade de Ponte Nova sob a perspectiva multidimensional nos de 1980, 1991, 2000 e 2012, a partir da metodologia adaptada de Barros, Carvalho e Franco (2003), tendo por base os microdados dos censos demográficos. Por meio do grande número de informações contidas na base de dados, tornou-se possível efetuar uma análise ampla que permite avaliar as condições de vida do domicílio. Em síntese, o índice de desenvolvimento das famílias de Ponte Nova em suas seis dimensões, com ressalva para o acesso ao trabalho, revelou progresso no nível de bem-estar das famílias. A geração deste importante índice pode, de certa forma, auxiliar na elaboração de políticas públicas que visam diminuir as desigualdades no município

    Polymer composites reinforced with natural fibers and nanocellulose in the automotive industry: a short review

    Get PDF
    Environmental concerns and cost reduction have encouraged the use of natural fillers as reinforcement in polymer composites. Currently, a wide variety of reinforcement, such as natural fibers and nanocellulose, are used for this purpose. Composite materials with natural fillers have not only met the environmental appeal, but also contribute to developing low-density materials with improved properties. The production of natural fillers is unlimited around the world, and many species are still to be discovered. Their processing is considered beneficial since the natural fillers do not cause corrosion or great wear of the equipment. For these reasons, polymer reinforced with natural fillers has been considered a good alternative for obtaining ecofriendly materials for several applications, including the automotive industry. This review explores the use of natural fillers (natural fibers, cellulose nanocrystals, and nanofibrillated cellulose) as reinforcement in polymer composites for the automotive industry323172016/09588-9; 2016/09588-9; 2016/09588-9CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível SuperiorCNPQ - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPESP – Fundação de Amparo à Pesquisa Do Estado De São Paul

    Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration

    Get PDF
    A major challenge exists in the preparation of scaffolds for bone regeneration, namely, achieving simultaneously bioactivity, biocompatibility, mechanical performance and simple manufacturing. Here, cellulose nanofibrils (CNF) are introduced for the preparation of scaffolds taking advantage of their biocompatibility and ability to form strong 3D porous networks from aqueous suspensions. CNF are made bioactive for bone formation through a simple and scalable strategy that achieves highly interconnected 3D networks. The resultant materials optimally combine morphological and mechanical features and facilitate hydroxyapatite formation while releasing essential ions for in vivo bone repair. The porosity and roughness of the scaffolds favor several cell functions while the ions act in the expression of genes associated with cell differentiation. Ion release is found critical to enhance the production of the bone morphogenetic protein 2 (BMP-2) from cells within the fractured area, thus accelerating the in vivo bone repair. Systemic biocompatibility indicates no negative effects on vital organs such as the liver and kidneys. The results pave the way towards a facile preparation of advanced, high performance CNF-based scaffolds for bone tissue engineering
    • …
    corecore