7 research outputs found

    Improved low-density subset sum algorithms

    No full text
    The general subset sum problem is NP-complete. However, there are two algorithms, one due to Brickell and the other to Lagarias and Odlyzko, which in polynomial time solve almost all subset sum problems of sufficiently low density. Both methods rely on basis reduction algorithms to find short nonzero vectors in special lattices. The Lagarias-Odlyzko algorithm would solve almost all subset sum problems of density < 0.6463 . . . in polynomial time if it could invoke a polynomial-time algorithm for finding the shortest non-zero vector in a lattice. This paper presents two modifications of that algorithm, either one of which would solve almost all problems of density < 0.9408 . . . if it could find shortest non-zero vectors in lattices. These modifications also yield dramatic improvements in practice when they are combined with known lattice basis reduction algorithms

    Improved Low-Density Subset Sum Algorithms

    No full text
    . The general subset sum problem is NP-complete. However, there are two algorithms, one due to Brickell and the other to Lagarias and Odlyzko, which in polynomial time solve almost all subset sum problems of sufficiently low density. Both methods rely on basis reduction algorithms to find short non-zero vectors in special lattices. The Lagarias-Odlyzko algorithm would solve almost all subset sum problems of density ! 0:6463 : : : in polynomial time if it could invoke a polynomial-time algorithm for finding the shortest non-zero vector in a lattice. This paper presents two modifications of that algorithm, either one of which would solve almost all problems of density ! 0:9408 : : : if it could find shortest non-zero vectors in lattices. These modifications also yield dramatic improvements in practice when they are combined with known lattice basis reduction algorithms. Key words. subset sum problems; knapsack cryptosystems; lattices; lattice basis reduction. Subject classifications. 1..

    ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients

    Get PDF
    Congenital disorders of glycosylation (CDG) arise from pathogenic mutations in over 100 genes leading to impaired protein or lipid glycosylation. ALG1 encodes a beta 1,4 mannosyltransferase that catalyzes the addition of the first of nine mannose moieties to form a dolichol-lipid linked oligosaccharide intermediate required for proper N-linked glycosylation. ALG1 mutations cause a rare autosomal recessive disorder termed ALG1-CDG. To date 13 mutations in 18 patients from 14 families have been described with varying degrees of clinical severity. We identified and characterized 39 previously unreported cases of ALG1-CDG from 32 families and add 26 new mutations. Pathogenicity of each mutation was confirmed based on its inability to rescue impaired growth or hypoglycosylation of a standard biomarker in an alg1-deficient yeast strain. Using this approach we could not establish a rank order comparison of biomarker glycosylation and patient phenotype, but we identified mutations with a lethal outcome in the first two years of life. The recently identified protein-linked xeno-tetrasaccharide biomarker, NeuAc-Gal-GlcNAc2, was seen in all 27 patients tested. Our study triples the number of known patients and expands the molecular and clinical correlates of this disorder. (C) 2016 Wiley Periodicals, Inc

    A Review of Known and Hypothetical Transmission Routes for Noroviruses

    Full text link
    Human noroviruses (NoVs) are considered a worldwide leading cause of acute non-bacterial gastroenteritis. Due to a combination of prolonged shedding of high virus levels in feces, virus particle shedding during asymptomatic infections, and a high environmental persistence, NoVs are easily transmitted pathogens. Norovirus (NoV) outbreaks have often been reported and tend to affect a lot of people. NoV is spread via feces and vomit, but this NoV spread can occur through several transmission routes. While person-to-person transmission is without a doubt the dominant transmission route, human infective NoV outbreaks are often initiated by contaminated food or water. Zoonotic transmission of NoV has been investigated, but has thus far not been demonstrated. The presented review aims to give an overview of these NoV transmission routes. Regarding NoV person-to-person transmission, the NoV GII. 4 genotype is discussed in the current review as it has been very successful for several decades but reasons for its success have only recently been suggested. Both pre-harvest and post-harvest contamination of food products can lead to NoV food borne illness. Pre-harvest contamination of food products mainly occurs via contact with polluted irrigation water in case of fresh produce or with contaminated harvesting water in case of bivalve molluscan shellfish. On the other hand, an infected food handler is considered as a major cause of post-harvest contamination of food products. Both transmission routes are reviewed by a summary of described NoV food borne outbreaks between 2000 and 2010. A third NoV transmission route occurs via water and the spread of NoV via river water, ground water, and surface water is reviewed. Finally, although zoonotic transmission remains hypothetical, a summary on the bovine and porcine NoV presence observed in animals is given and the presence of human infective NoV in animals is discussed. © 2012 Springer Science+Business Media New York
    corecore