29 research outputs found

    Stomatal acclimation to dynamic light: implications for photosynthesis and water use efficiency

    Get PDF
    Although stomata typically occupy only a small portion of the leaf surface (0.3-5%), stomata control approximately 95% of all gas exchange between the leaf interior and external environment.Therefore, stomatal behaviour has major consequences for photosynthetic CO2fixation and water loss from leaf to canopy levels, influencing carbon and hydrological cycles at global scales. Plant acclimation to growth light environment has been studied extensively; however, the majority of these studies have focused on constant light intensity and photo-acclimation, with few studies exploring the impact of dynamic growth light on stomatal acclimation and behaviour. Initially, in this thesis natural variation in the response of stomatal conductance (gs) to light was assessed in the model tree species Populus nigra. Dynamic growth light regimes (varying in intensity and pattern) were subsequently used, to explore how stomatal acclimation to growth light impacts stomatal behaviour, photosynthesis (A) and water use efficiency (Wi). The rate, magnitude and diurnal behaviour of the response of gs to light varied significantly between genotypes and growth light treatments, which promoted differences in A and therefore Wiover the course of the day. The findings in this study illustrate the impact of growing plants in dynamic light regimes, similar to those experienced by plants in the natural environment, on the physiology and performance of model species Populus nigraand Arabidopsis thaliana. Furthermore, it emphasizes that growing plants under laboratory conditions and square-wave illumination does not accurately represent plant acclimation anddevelopment under a natural environment. Highlighting the need to potentially rethink how we grow plants as a community if we are to infer results from the lab to the field. Finally, this study highlights the importance of considering plant acclimation togrowth light, and the impact this has on the functional response of stomata, when attempting to model the response of gsacross leaf to ecosystem and global scales

    Acclimation to fluctuating light impacts the rapidity and diurnal rhythm of stomatal conductance.

    Get PDF
    Plant acclimation to growth light environment has been studied extensively, however, the majority of these studies have focused on light intensity and photo-acclimation, with few studies exploring the impact of dynamic growth light on stomatal acclimation and behavior. In order to assess the impact of growth light regime on stomatal acclimation, we grew plants in three different lighting regimes (with the same average daily intensity); fluctuating with a fixed pattern of light, fluctuating with a randomized pattern of light (sinusoidal), and non-fluctuating (square wave), to assess the effect of light regime dynamics on gas exchange. We demonstrated that gs acclimation is influenced by both intensity and light pattern, modifying the stomatal kinetics at different times of the day resulting in differences in the rapidity and magnitude of the gs response. We also describe and quantify response to an internal signal that uncouples variation in A and gs over the majority of the diurnal period, and represents 25% of the total diurnal gs. This gs response can be characterized by a Gaussian element and when incorporated into the widely used Ball-Berry Model greatly improved the prediction of gs in a dynamic environment. From these findings we conclude that acclimation of gs to growth light could be an important strategy for maintaining carbon fixation and overall plant water status, and should be considered when inferring responses in the field from laboratory based experiments

    Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss

    Get PDF
    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO2 diffusion into the leaf to maintain photosynthetic rates (A). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time

    Light, power, action! Interaction of respiratory energy and blue light induced stomatal movements

    Get PDF
    Although the signalling pathway of blue light (BL)-dependent stomatal opening is well characterized, little is known about the interspecific diversity, the role it plays in the regulation of gas exchange and the source of energy used to drive the commonly observed increase in pore aperture. Using a combination of red and BL under ambient and low [O₂] (to inhibit respiration), the interaction between BL, photosynthesis and respiration in determining stomatal conductance was investigated. These findings were used to develop a novel model to predict the feedback between photosynthesis and stomatal conductance under these conditions. Here we demonstrate that BL-induced stomatal responses are far from universal, and that significant species-specific differences exist in terms of both rapidity and magnitude. Increased stomatal conductance under BL reduced photosynthetic limitation, at the expense of water loss. Moreover, we stress the importance of the synergistic effect of BL and respiration in driving rapid stomatal movements, especially when photosynthesis is limited. These observations will help reshape our understanding of diurnal gas exchange in order to exploit the dynamic coordination between the rate of carbon assimilation (A) and stomatal conductance (gs), as a target for enhancing crop performance and water use efficiency

    Temporal Dynamics of Stomatal Behavior: Modeling and Implications for Photosynthesis and Water Use.

    Get PDF
    An analysis of stomatal behavior reveals the importance of modeling slow stomatal responses and the impacts on photosynthesis under dynamic light environments

    Blue Light Induces a Distinct Starch Degradation Pathway in Guard Cells for Stomatal Opening

    Get PDF
    Stomatal pores form a crucial interface between the leaf mesophyll and the atmosphere, controlling water and carbon balance in plants [1]. Major advances have been made in understanding the regulatory networks and ion fluxes in the guard cells surrounding the stomatal pore [2]. However, our knowledge on the role of carbon metabolism in these cells is still fragmentary [3-5]. In particular, the contribution of starch in stomatal opening remains elusive [6]. Here, we used Arabidopsis thaliana as a model plant to provide the first quantitative analysis of starch turnover in guard cells of intact leaves during the diurnal cycle. Starch is present in guard cells at the end of night, unlike in the rest of the leaf, but is rapidly degraded within 30 min of light. This process is critical for the rapidity of stomatal opening and biomass production. We exploited Arabidopsis molecular genetics to define the mechanism and regulation of guard cell starch metabolism, showing it to be mediated by a previously uncharacterized pathway. This involves the synergistic action of β-amylase 1 (BAM1) and α-amylase 3 (AMY3) - enzymes that are normally not required for nighttime starch degradation in other leaf tissues. This pathway is under the control of the phototropin-dependent blue-light signaling cascade and correlated with the activity of the plasma membrane H+-ATPase. Our results show that guard cell starch degradation has an important role in plant growth by driving stomatal responses to light

    Rieske FeS overexpression in tobacco provides increased abundance and activity of Cytochrome b₆f

    Get PDF
    Photosynthesis is fundamental for plant growth and yield. The Cytochrome b₆ f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of Cytochrome bA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to Photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of non-photochemical quenching, in transgenic plants suggests a more rapid build-up of the transmembrane proton gradient, also supporting the increased in vivo Cytochrome b₆ f activity. However, there was no consistent increase in steady-state rates of electron transport or CO₂ assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional Cytochrome b₆ f and may have the potential to increase plant productivity if combined with other traits

    Reconstructing the reproductive mode of an Ediacaran macro-organism.

    Get PDF
    Enigmatic macrofossils of late Ediacaran age (580-541 million years ago) provide the oldest known record of diverse complex organisms on Earth, lying between the microbially dominated ecosystems of the Proterozoic and the Cambrian emergence of the modern biosphere. Among the oldest and most enigmatic of these macrofossils are the Rangeomorpha, a group characterized by modular, self-similar branching and a sessile benthic habit. Localized occurrences of large in situ fossilized rangeomorph populations allow fundamental aspects of their biology to be resolved using spatial point process techniques. Here we use such techniques to identify recurrent clustering patterns in the rangeomorph Fractofusus, revealing a complex life history of multigenerational, stolon-like asexual reproduction, interspersed with dispersal by waterborne propagules. Ecologically, such a habit would have allowed both for the rapid colonization of a localized area and for transport to new, previously uncolonized areas. The capacity of Fractofusus to derive adult morphology by two distinct reproductive modes documents the sophistication of its underlying developmental biology.This work has been supported by the Natural Environment Research Council [grant numbers NE/I005927/1 to C.G.K., NE/J5000045/1 to J.J.M., NE/L011409/1 to A.G.L. and NE/G523539/1 to E.G.M.], and a Henslow Junior Research Fellowship from Cambridge Philosophical Society to A.G.L.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature1464

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
    corecore