89 research outputs found

    Toward a Unification of Star Formation Rate Determinations in the Milky Way and Other Galaxies

    Full text link
    The star formation rate (SFR) of the Milky Way remains poorly known, with often-quoted values ranging from 1 to 10 solar masses per year. This situation persists despite the potential for the Milky Way to serve as the ultimate SFR calibrator for external galaxies. We show that various estimates for the Galactic SFR are consistent with one another once they have been normalized to the same initial mass function (IMF) and massive star models, converging to 1.9 +/- 0.4 M_sun/yr. However, standard SFR diagnostics are vulnerable to systematics founded in the use of indirect observational tracers sensitive only to high-mass stars. We find that absolute SFRs measured using resolved low/intermediate-mass stellar populations in Galactic H II regions are systematically higher by factors of ~2-3 as compared with calibrations for SFRs measured from mid-IR and radio emission. We discuss some potential explanations for this discrepancy and conclude that it could be allayed if (1) the power-law slope of the IMF for intermediate-mass (1.5 M_sun < m < 5 M_sun) stars were steeper than the Salpeter slope, or (2) a correction factor was applied to the extragalactic 24 micron SFR calibrations to account for the duration of star formation in individual mid-IR-bright H II regions relative to the lifetimes of O stars. Finally, we present some approaches for testing if a Galactic SFR of ~2 M_sun/yr is consistent with what we would measure if we could view the Milky Way as external observers. Using luminous radio supernova remnants and X-ray point sources, we find that the Milky Way deviates from expectations at the 1-3 sigma level, hinting that perhaps the Galactic SFR is overestimated or extragalactic SFRs need to be revised upwards.Comment: Accepted for publication in A

    Duration of Star Formation in Galactic Giant Molecular Clouds. I. The Great Nebula in Carina

    Get PDF
    We present a novel infrared spectral energy distribution (SED) modeling methodology that uses likelihood-based weighting of the model fitting results to construct probabilistic Hertzsprung–Russell diagrams (pHRD) for X-ray-identified, intermediate-mass (2–8 M⊙), pre-main-sequence young stellar populations. This methodology is designed specifically for application to young stellar populations suffering strong, differential extinction (ΔA_V > 10 mag), typical of Galactic massive star-forming regions. We pilot this technique in the Carina Nebula Complex (CNC) by modeling the 1–8 μm SEDs of 2269 likely stellar members that exhibit no excess emission from circumstellar dust disks at 4.5 μm or shorter wavelengths. A subset of ~100 intermediate-mass stars in the lightly obscured Trumpler 14 and 16 clusters have available spectroscopic T_(eff), measured from the Gaia-ESO survey. We correctly identify the stellar temperature in 85% of cases, and the aggregate pHRD for all sources returns the same peak in the stellar age distribution as obtained using the spectroscopic T_(eff). The SED model parameter distributions of stellar mass and evolutionary age reveal significant variation in the duration of star formation among four large-scale stellar overdensities within the CNC and a large distributed stellar population. Star formation began ~10 Myr ago and continues to the present day, with the star formation rate peaking ≾3 Myr ago when the massive Trumpler 14 and 16 clusters formed. We make public the set of 100,000 SED models generated from standard pre-main-sequence evolutionary tracks and our custom software package for generating pHRDs and mass–age distributions from the SED fitting results
    • …
    corecore