1,222 research outputs found

    Operative Environment

    Get PDF
    Postoperative SSIs are believed to occur via bacterial inoculation at the time of surgery or as a result of bacterial contamination of the wound via open pathways to the deep tissue layers.1–3 The probability of SSI is reflected by interaction of parameters that can be categorized into three major groups.2 The first group consists of factors related to the ability of bacteria to cause infection and include initial inoculation load and genetically determined virulence factors that are required for adherence, reproduction, toxin production, and bypassing host defense mechanisms. The second group involves those factors related to the defense capacity of the host including local and systemic defense mechanisms. The last group contains environmental determinants of exposure such as size, time, and location of the surgical wound that can provide an opportunity for the bacteria to enter the surgical wound, overcome the local defense system, sustain their presence, and replicate and initiate local as well as systemic inflammatory reactions of the host. The use of iodine impregnated skin incise drapes shows decreased skin bacterial counts but no correlation has been established with SSI. However, no recommendations regarding the use of skin barriers can be made (see this Workgroup, Question 27)

    Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska

    Get PDF
    Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate.This study examined the levels of PCBs and three pesticides [p, p'-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p'-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits.The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health and cultural benefits from eating fish

    Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome

    Get PDF
    Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation

    Widespread Over-Expression of the X Chromosome in Sterile F1 Hybrid Mice

    Get PDF
    The X chromosome often plays a central role in hybrid male sterility between species, but it is unclear if this reflects underlying regulatory incompatibilities. Here we combine phenotypic data with genome-wide expression data to directly associate aberrant expression patterns with hybrid male sterility between two species of mice. We used a reciprocal cross in which F1 males are sterile in one direction and fertile in the other direction, allowing us to associate expression differences with sterility rather than with other hybrid phenotypes. We found evidence of extensive over-expression of the X chromosome during spermatogenesis in sterile but not in fertile F1 hybrid males. Over-expression was most pronounced in genes that are normally expressed after meiosis, consistent with an X chromosome-wide disruption of expression during the later stages of spermatogenesis. This pattern was not a simple consequence of faster evolutionary divergence on the X chromosome, because X-linked expression was highly conserved between the two species. Thus, transcriptional regulation of the X chromosome during spermatogenesis appears particularly sensitive to evolutionary divergence between species. Overall, these data provide evidence for an underlying regulatory basis to reproductive isolation in house mice and underscore the importance of transcriptional regulation of the X chromosome to the evolution of hybrid male sterility

    White matter disturbances in major depressive disorder : a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group

    Get PDF
    Altres ajuts: The ENIGMA-Major Depressive Disorder working group gratefully acknowledges support from the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to PMT) and NIH grant R01 MH116147 (PMT). LS is supported by an NHMRC MRFF Career Development Fellowship (APP1140764). We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. We wish to acknowledge the patients and control subjects that have particiaped int the study. We thank Rosa Schirmer, Elke Schreiter, Reinhold Borschke and Ines Eidner for image acquisition and data preparation, and Anna Oliynyk for quality checks. We thank Dorothee P. Auer and F. Holsboer for initiation of the RUD study. NESDA: The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen) and mental health care organizations, see www.nesda.nl. M-JvT was supported by a VENI grant (NWO grant number 016.156.077). UCSF: This work was supported by the Brain and Behavior Research Foundation (formerly NARSAD) to TTY; the National Institute of Mental Health (R01MH085734 to TTY; K01MH117442 to TCH) and by the American Foundation for Suicide Prevention (PDF-1-064-13) to TCH. Stanford: This work was supported by NIMH Grants R01MH59259 and R37101495 to IHG. MS is partially supported by an award funded by the Phyllis and Jerome Lyle Rappaport Foundation. Muenster: This work was funded by the German Research Foundation (SFB-TRR58, Projects C09 and Z02 to UD) and the Interdisciplinary Center for Clinical Research (IZKF) of the medical faculty of Münster (grant Dan3/012/17 to UD). Marburg: This work was funded by the German Research Foundation (DFG, grant FOR2107 DA1151/5-1 and DA1151/5-2 to UD; KI 588/ 14-1, KI 588/14-2 to TK; KR 3822/7-1, KR 3822/7-2 to AK; JA 1890/ 7-1, JA 1890/7-2 to AJ). IMH-MDD: This work was supported by the National Healthcare Group Research Grant (SIG/15012) awarded to KS. Barcelona: This study was funded by two grants of the Fondo de Investigación Sanitaria from the Instituto de Salud Carlos III, by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). The author is funded through 'Miguel Servet' research contract (CP16-0020), co-financed by the European Regional Development Fund (ERDF) (2016-2019). QTIM: We thank the twins and singleton siblings who gave generously of their time to participate in the QTIM study. We also thank the many research assistants, radiographers, and IT support staff for data acquisition and DNA sample preparation. This study was funded by White matter disturbances in major depressive disorder: a coordinated analysis across 20 international. . . 1521 the National Institute of Child Health & Human Development (RO1 HD050735); National Institute of Biomedical Imaging and Bioengineering (Award 1U54EB020403-01, Subaward 56929223); National Health and Medical Research Council, Australia (Project Grants 496682, 1009064). NIH ENIGMA-BD2K U54 EB020403 (Thompson); R01 MH117601 (Jahanshad/Schmaal). Magdeburg: M.L. and M.W. are funded by SFB 779. Bipolar Family Study: This study has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013). This paper reflects only the author's views and the European Union is not liable for any use that may be made of the information contained therein. This work was also supported by a Wellcome Trust Strategic Award (104036/Z/14/Z). Minnesota Adolescent Depression Study: The study was funded by the National Institute of Mental Health (K23MH090421), the National Alliance for Research on Schizophrenia and Depression, the University of Minnesota Graduate School, the Minnesota Medical Foundation, and the Biotechnology Research Center (P41 RR008079 to the Center for Magnetic Resonance Research), University of Minnesota, and the Deborah E. Powell Center for Women's Health Seed Grant, University of Minnesota. Dublin: This study was supported by Science Foundation Ireland through a Stokes Professorhip grant to TF. MPIP: The MPIP Sample comprises patients included in the Recurrent Unipolar Depression (RUD) Case-Control study at the clinic of the Max Planck Institute of Psychiatry, Munich, German. The RUD study was supported by GlaxoSmithKline.Alterations in white matter (WM) microstructure have been implicated in the pathophysiology of major depressive disorder (MDD). However, previous findings have been inconsistent, partially due to low statistical power and the heterogeneity of depression. In the largest multi-site study to date, we examined WM anisotropy and diffusivity in 1305 MDD patients and 1602 healthy controls (age range 12-88 years) from 20 samples worldwide, which included both adults and adolescents, within the MDD Working Group of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium. Processing of diffusion tensor imaging (DTI) data and statistical analyses were harmonized across sites and effects were meta-analyzed across studies. We observed subtle, but widespread, lower fractional anisotropy (FA) in adult MDD patients compared with controls in 16 out of 25 WM tracts of interest (Cohen's d between 0.12 and 0.26). The largest differences were observed in the corpus callosum and corona radiata. Widespread higher radial diffusivity (RD) was also observed (all Cohen's d between 0.12 and 0.18). Findings appeared to be driven by patients with recurrent MDD and an adult age of onset of depression. White matter microstructural differences in a smaller sample of adolescent MDD patients and controls did not survive correction for multiple testing. In this coordinated and harmonized multisite DTI study, we showed subtle, but widespread differences in WM microstructure in adult MDD, which may suggest structural disconnectivity in MDD

    Structural Characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei Bound to the Antifungal Drugs Posaconazole and Fluconazole

    Get PDF
    Chagas Disease is caused by kinetoplastid protozoa Trypanosoma cruzi, whose sterols resemble those of fungi, in both composition and biosynthetic pathway. Azole inhibitors of sterol 14α-demethylase (CYP51), such as fluconazole, itraconazole, voriconazole, and posaconazole, successfully treat fungal infections in humans. Efforts have been made to translate anti-fungal azoles into a second-use application for Chagas Disease. Ravuconazole and posaconazole have been recently proposed as candidates for clinical trials with Chagas Disease patients. However, the widespread use of posaconazole for long-term treatment of chronic infections may be limited by hepatic and renal toxicity, a requirement for simultaneous intake of a fatty meal or nutritional supplement to enhance absorption, and cost. To aid our search for structurally and synthetically simple CYP51 inhibitors, we have determined the crystal structures of the CYP51 targets in T. cruzi and T. brucei, both bound to the anti-fungal drugs fluconazole or posaconazole. The structures provide a basis for a design of new drugs targeting Chagas Disease, and also make it possible to model the active site characteristics of the highly homologous Leishmania CYP51. This work provides a foundation for rational synthesis of new therapeutic agents targeting the three kinetoplastid parasites

    Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance.

    Get PDF
    Esophageal adenocarcinoma (EAC) has a poor outcome, and targeted therapy trials have thus far been disappointing owing to a lack of robust stratification methods. Whole-genome sequencing (WGS) analysis of 129 cases demonstrated that this is a heterogeneous cancer dominated by copy number alterations with frequent large-scale rearrangements. Co-amplification of receptor tyrosine kinases (RTKs) and/or downstream mitogenic activation is almost ubiquitous; thus tailored combination RTK inhibitor (RTKi) therapy might be required, as we demonstrate in vitro. However, mutational signatures showed three distinct molecular subtypes with potential therapeutic relevance, which we verified in an independent cohort (n = 87): (i) enrichment for BRCA signature with prevalent defects in the homologous recombination pathway; (ii) dominant T>G mutational pattern associated with a high mutational load and neoantigen burden; and (iii) C>A/T mutational pattern with evidence of an aging imprint. These subtypes could be ascertained using a clinically applicable sequencing strategy (low coverage) as a basis for therapy selection.Whole-genome sequencing of esophageal adenocarcinoma samples was performed as part of the International Cancer Genome Consortium (ICGC) through the oEsophageal Cancer Clinical and Molecular Stratification (OCCAMS) Consortium and was funded by Cancer Research UK. We thank the ICGC members for their input on verification standards as part of the benchmarking exercise. We thank the Human Research Tissue Bank, which is supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre, from Addenbrooke’s Hospital and UCL. Also the University Hospital of Southampton Trust and the Southampton, Birmingham, Edinburgh and UCL Experimental Cancer Medicine Centres and the QEHB charities. This study was partly funded by a project grant from Cancer Research UK. R.C.F. is funded by an NIHR Professorship and receives core funding from the Medical Research Council and infrastructure support from the Biomedical Research Centre and the Experimental Cancer Medicine Centre. We acknowledge the support of The University of Cambridge, Cancer Research UK (C14303/A17197) and Hutchison Whampoa Limited. We would like to thank Dr. Peter Van Loo for providing the NGS version of ASCAT for copy number calling. We are grateful to all the patients who provided written consent for participation in this study and the staff at all participating centres. Some of the work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme. The work at UCLH/UCL was also supported by the CRUK UCL Early Cancer Medicine Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.365

    Mouse mammary stem cells express prognostic markers for triple-negative breast cancer

    Get PDF
    Introduction Triple negative breast cancer (TNBC) is a heterogeneous group of tumours in which chemotherapy, the current mainstay of systemic treatment, is often initially beneficial but with a high risk of relapse and metastasis. There is currently no means of predicting which TNBC will relapse. We tested the hypothesis that the biological properties of normal stem cells are re-activated in tumour metastasis and that, therefore, the activation of normal mammary stem cell-associated gene sets in primary TNBC would be highly prognostic for relapse and metastasis. Methods Mammary basal stem and myoepithelial cells were isolated by flow cytometry and tested in low dose transplant assays. Gene expression microarrays were used to establish expression profiles of the stem and myoepithelial populations; these were compared to each other and to our previously established mammary epithelial gene expression profiles. Stem cell genes were classified by Gene Ontology (GO) analysis and the expression of a subset analysed in the stem cell population at single cell resolution. Activation of stem cell genes was interrogated across different breast cancer cohorts and within specific subtypes and tested for clinical prognostic power. Results A set of 323 genes was identified that was expressed significantly more highly in the purified basal stem cells compared to all other cells of the mammary epithelium. 109 out of 323 genes had been associated with stem cell features in at least one other study in addition to our own, providing further support for their involvement in the biology of this cell type. GO analysis demonstrated an enrichment of these genes for an association with cell migration, cytoskeletal regulation and tissue morphogenesis, consistent with a role in invasion and metastasis. Single cell resolution analysis showed that individual cells co-expressed both epithelial- and mesenchymal-associated genes/proteins. Most strikingly, we demonstrated that strong activity of this stem cell gene set in TNBCs identified those tumours most likely to rapidly progress to metastasis. Conclusions Our findings support the hypothesis that the biological properties of normal stem cells are drivers of metastasis and that these properties can be used to stratify patients with a highly heterogeneous disease such as TNBC

    Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial

    Get PDF
    BACKGROUND: Passive immunotherapy using hyperimmune intravenous immunoglobulin (hIVIG) to SARS-CoV-2, derived from recovered donors, is a potential rapidly available, specific therapy for an outbreak infection such as SARS-CoV-2. Findings from randomised clinical trials of hIVIG for the treatment of COVID-19 are limited. METHODS: In this international randomised, double-blind, placebo-controlled trial, hospitalised patients with COVID-19 who had been symptomatic for up to 12 days and did not have acute end-organ failure were randomly assigned (1:1) to receive either hIVIG or an equivalent volume of saline as placebo, in addition to remdesivir, when not contraindicated, and other standard clinical care. Randomisation was stratified by site pharmacy; schedules were prepared using a mass-weighted urn design. Infusions were prepared and masked by trial pharmacists; all other investigators, research staff, and trial participants were masked to group allocation. Follow-up was for 28 days. The primary outcome was measured at day 7 by a seven-category ordinal endpoint that considered pulmonary status and extrapulmonary complications and ranged from no limiting symptoms to death. Deaths and adverse events, including organ failure and serious infections, were used to define composite safety outcomes at days 7 and 28. Prespecified subgroup analyses were carried out for efficacy and safety outcomes by duration of symptoms, the presence of anti-spike neutralising antibodies, and other baseline factors. Analyses were done on a modified intention-to-treat (mITT) population, which included all randomly assigned participants who met eligibility criteria and received all or part of the assigned study product infusion. This study is registered with ClinicalTrials.gov, NCT04546581. FINDINGS: From Oct 8, 2020, to Feb 10, 2021, 593 participants (n=301 hIVIG, n=292 placebo) were enrolled at 63 sites in 11 countries; 579 patients were included in the mITT analysis. Compared with placebo, the hIVIG group did not have significantly greater odds of a more favourable outcome at day 7; the adjusted OR was 1·06 (95% CI 0·77–1·45; p=0·72). Infusions were well tolerated, although infusion reactions were more common in the hIVIG group (18·6% vs 9·5% for placebo; p=0·002). The percentage with the composite safety outcome at day 7 was similar for the hIVIG (24%) and placebo groups (25%; OR 0·98, 95% CI 0·66–1·46; p=0·91). The ORs for the day 7 ordinal outcome did not vary for subgroups considered, but there was evidence of heterogeneity of the treatment effect for the day 7 composite safety outcome: risk was greater for hIVIG compared with placebo for patients who were antibody positive (OR 2·21, 95% CI 1·14–4·29); for patients who were antibody negative, the OR was 0·51 (0·29–0·90; pinteraction=0·001). INTERPRETATION: When administered with standard of care including remdesivir, SARS-CoV-2 hIVIG did not demonstrate efficacy among patients hospitalised with COVID-19 without end-organ failure. The safety of hIVIG might vary by the presence of endogenous neutralising antibodies at entry. FUNDING: US National Institutes of Health

    Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature

    Full text link
    • …
    corecore