106 research outputs found

    Meta-Analysis Reveals Transcription Factor Upregulation in Cells of Injured Mouse Sciatic Nerve

    Get PDF
    Following peripheral nerve injury, transcription factors upregulated in the distal nerve play essential roles in Schwann cell reprogramming, fibroblast activation and immune cell function to create a permissive distal nerve environment for axonal regrowth. In this report, we first analysed four microarray data sets to identify transcription factors that have at least twofold upregulation in the mouse distal nerve stump at day 3 and day 7 post-injury. Next, we compared their relative mRNA levels through the analysis of an available bulk mRNA sequencing data set at day 5 post-injury. We then investigated the expression of identified TFs in analysed single-cell RNA sequencing data sets for the distal nerve at day 3 and day 9 post-injury. These analyses identified 55 transcription factors that have at least twofold upregulation in the distal nerve following mouse sciatic nerve injury. Expression profile for the identified 55 transcription factors in cells of the distal nerve stump was further analysed on the scRNA-seq data. Transcription factor network and functional analysis were performed in Schwann cells. We also validated the expression pattern of Jun, Junb, Runx1, Runx2, and Sox2 in the mouse distal nerve stump by immunostaining. The findings from our study not only could be used to understand the function of key transcription factors in peripheral nerve regeneration but also could be used to facilitate experimental design for future studies to investigate the function of individual TFs in peripheral nerve regeneration.</jats:p

    Finding Needles in Haystacks: The Use of Quantitative Proteomics for the Early Detection of Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) is a common and treatable disease if diagnosed early. Current population screening programs are suboptimal, and consequently, there is a need for the development of new methodologies for early diagnosis of CRC. In the past 10 years, unprecedented technological advancements in the field of mass spectrometry (MS)-based proteomics have progressively increased the sophistication and utility of these investigations, leading to the draft mapping of the human proteome. These exciting studies have shaped our mechanistic understanding of the human genome and begun to provide us with a suite of novel biomarkers to predict the onset, progression and severity of many debilitating diseases. Thus, sophisticated MS workflows coupled with revolutionary protein quantification techniques hold promise for the field of MS-based plasma proteomics, particularly valuable in the context of early stage identification of curable CRC. However, within the last 40 years, no new plasma protein biomarkers of CRC have been translated into clinical practice. Here. we discuss the application of proteomic technologies within the field of CRC, highlighting contemporary MS-based plasma proteomic strategies that could be exploited to deliver on the promise of a panel of sensitive and specific plasma-based biomarkers with which to non-invasively detect early stage CRC

    Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions

    Get PDF
    Abstract Background The mammalian epididymis is responsible for the provision of a highly specialized environment in which spermatozoa acquire functional maturity and are subsequently stored in preparation for ejaculation. Making important contributions to both processes are epididymosomes, small extracellular vesicles released from the epididymal soma via an apocrine secretory pathway. While considerable effort has been focused on defining the cargo transferred between epididymosomes and spermatozoa, comparatively less is known about the mechanistic basis of these interactions. To investigate this phenomenon, we have utilized an in vitro co-culture system to track the transfer of biotinylated protein cargo between mouse epididymosomes and recipient spermatozoa isolated from the caput epididymis; an epididymal segment that is of critical importance for promoting sperm maturation. Results Our data indicate that epididymosome-sperm interactions are initiated via tethering of the epididymosome to receptors restricted to the post-acrosomal domain of the sperm head. Thereafter, epididymosomes mediate the transfer of protein cargo to spermatozoa via a process that is dependent on dynamin, a family of mechanoenzymes that direct intercellular vesicle trafficking. Notably, upon co-culture of sperm with epididymosomes, dynamin 1 undergoes a pronounced relocation between the peri- and post-acrosomal domains of the sperm head. This repositioning of dynamin 1 is potentially mediated via its association with membrane rafts and ideally locates the enzyme to facilitate the uptake of epididymosome-borne proteins. Accordingly, disruption of membrane raft integrity or pharmacological inhibition of dynamin both potently suppress the transfer of biotinylated epididymosome proteins to spermatozoa. Conclusion Together, these data provide new mechanistic insight into epididymosome-sperm interactions with potential implications extending to the manipulation of sperm maturation for the purpose of fertility regulation

    A review of the anti-tumor potential of current therapeutics targeting the mitochondrial protease ClpP in H3K27-altered, diffuse midline glioma

    Get PDF
    Diffuse midline gliomas (DMGs) are devastating pediatric brain tumors recognized as the leading cause of cancer-related death in children. DMGs are high-grade gliomas (HGGs) diagnosed along the brain's midline. Euchromatin is the hallmark feature of DMG, caused by global hypomethylation of H3K27 either through point mutations in histone H3 genes (H3K27M), or by overexpression of the enhancer of zeste homolog inhibitory protein (EZHIP). In a clinical trial for adults with progressive HGGs, a 22-year-old patient with a thalamic H3K27-altered DMG, showed remarkable clinical and radiological responses to dordaviprone (ONC201). This response in a H3K27-altered HGG patient, coupled with the lack of response of patients harboring wildtype-H3 tumors, has increased the clinical interest in dordaviprone for the treatment of DMG. Additional reports of clinical benefit have emerged, but research defining mechanisms of action (MOA) fall behind dordaviprone's clinical use, with biomarkers of response unresolved. Here, we summarize dordaviprone's safety, interrogate its preclinical MOA- identifying the mitochondrial protease 'ClpP' as a biomarker of response, and discuss other ClpP-agonists, expanding the arsenal of potential weapons in the fight against DMG. Finally, we discuss combination strategies including ClpP-agonists, and its immunomodulatory effects suggestive of a role for the tumor microenvironment in DMG patients' response

    Progressive age-associated activation of JNK associates with conduction disruption in the aged atrium.

    Get PDF
    Connexin43 (Cx43) is critical for maintaining electrical conduction across atrial muscle. During progressive aging cardiac conduction slows and becomes susceptible to disruption, predisposing to arrhythmias. Changes in Cx43 protein expression, or its phosphorylation status, can instigate changes in the conduction of the cardiac action potential. Our study investigated whether increased levels of activated c-jun N-terminal kinase (JNK) is the mechanism responsible for the decline of Cx43 protein and intercellular communication during progressive aging. We examined right atrial muscle from guinea pigs between 1 day and 38 months of age. The area of the intercalated disc increased with age concurrent with a 75% decline in total C43 protein expression and spatial re-organisation of the remaining protein. An age-dependent increase in activated-JNK correlated with a rise in phosphorylated Cx43. The data also correlated with slowing of the action potential conduction velocity across the right atria from 0.38±0.01 m/s at 1 month of age to 0.30±0.01 m/s at 38 months of age. The JNK activator anisomycin increased levels of activated JNK in myocytes and reduced Cx43 protein expression paralleling the aging effect The JNK inhibitor SP600125, was found to eradicate almost all trace of Cx43 protein from the intercalating discs. We conclude that in vivo activation of JNK increases with age leading to the loss of Cx43 protein from atrial myocytes. This progressive loss results in impaired conduction and is likely to contribute to the increasing risk of atrial arrhythmias with advancing age

    Three year experience with the cochlear BAHA attract implant: a systematic review of the literature

    Get PDF
    Background Bone conduction devices are widely used and indicated in cases of conductive, mixed or single sided deafness where conventional hearing aids are not indicated or tolerated. Percutaneous bone-conduction devices gave satisfactory hearing outcomes but were frequently complicated by soft tissue reactions. Transcutaneous bone conduction devices were developed in order to address some of the issues related to the skin-penetrating abutment. The aim of this article is to present a systematic review of the indications, surgical technique and audiological, clinical and functional outcomes of the BAHA Attract device reported so far. Methods A systematic computer-based literature search was performed on the PubMed database as well as Scopus, Cochrane and Google Scholar. Out of 497 articles, 10 studies and 89 reported cases were finally included in our review. Results The vast majority of implanted patients were satisfied with the aesthetics of the device scoring highly at the Abbreviated Profile of Hearing Aid Benefit, Glasgow Benefit Inventory and Client Oriented Scale of Improvement. Overall, hearing outcomes, tested by various means including speech in noise, free field hearing testing and word discrimination scores showed a significant improvement. Complications included seroma or haematoma formation, numbness around the area of the flap, swelling and detachment of the sound processor from the external magnet. Conclusions The functional and audiological results presented so far in the literature have been satisfactory and the complication rate is low compared to the skin penetrating Bone Conduction Devices. Further robust trials will be needed to study the long-term outcomes and any adverse effects
    corecore